952 resultados para Kirchhoff plate equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized Lévêque solution is presented for the conjugate fluid–fluid problem that arises in the thermal entrance region of laminar counterflow heat exchangers. The analysis, carried out for constant property fluids, assumes that the Prandtl and Peclet numbers are both large compared to unity, and neglects axial conduction both in the fluids and in the plate, assumed to be thermally thin. Under these conditions, the thermal entrance region admits an asymptotic self-similar description where the temperature varies as a power ϳ of the axial distance, with the particularity that the self-similarity exponent must be determined as an eigenvalue by solving a transcendental equation arising from the requirement of continuity of heat fluxes at the heat conducting wall. Specifically, the analysis reveals that j depends only on the lumped parameter ƙ = (A2/A1)1/3 (α1/α2)1/3(k2/k1), defined in terms of the ratios of the wall velocity gradients, A, thermal diffusivities, α i, and thermal conductivities,k i, of the fluids entering, 1, and exiting, 2, the heat exchanger. Moreover, it is shown that for large (small) values of K solution reduces to the classical first (second) Lévêque solution. Closed-form analytical expressions for the asymptotic temperature distributions and local heat-transfer rate in the thermal entrance region are given and compared with numerical results in the counterflow parallel-plate configuration, showing very good agreement in all cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se hace una pequeña introducción y después un estudio sobre las posibilidades y limitaciones en análisis de placas delgadas de elementos simples polinómicos de clase C.1. Se expone una familia jerárquica de dichos elementos, que se aplica a varios casos particulares. En base a estos se deducen algunas conclusiones, especialmente en lo que se refiere a eficacia computacional. Al final se proponen trabajos a realizar a partir de los datos existentes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibilities and limitations of high order hyperelements in plate bending analysis are discussed. Explicit shape functions for some types of triangular elements are given. These elements are applied to simple cases to assess their computational efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer solution to analyze nonprismatic folded plate structures is shown. Arbitrary cross-sections (simple and multiple), continuity over intermediate supports and general loading and longitudinal boundary conditions are dealt with. The folded plates are assumed to be straight and long (beam like structures) and some simplifications are introduced in order to reduce the computational effort. The formulation here presented may be very suitable to be used in the bridge deck analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general fractional porous medium equation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Monge–Ampère (MA) equation arising in illumination design is highly nonlinear so that the convergence of the MA method is strongly determined by the initial design. We address the initial design of the MA method in this paper with the L2 Monge-Kantorovich (LMK) theory, and introduce an efficient approach for finding the optimal mapping of the LMK problem. Three examples, including the beam shaping of collimated beam and point light source, are given to illustrate the potential benefits of the LMK theory in the initial design. The results show the MA method converges more stably and faster with the application of the LMK theory in the initial design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a dynamic analysis of transnational shells is presented. The general linear shell theory is used in conjunction with additional shallow and curved plate approximations. In order to apply some type of extended Levy solution, the shell is assumed to be limited by a rectangular plan form, with two opposite edges simply supported (gable boundary conditions). First, the shells free vibrations are studied in the usual way, obtaining for each Fourier term the natural frequencies as solutions of a transcendental equation. However, solving these equations arises enormous computational difficulties. This paper deals specifically with this problem, trying to reduce its dimension by a discretization procedure. In the shell dynamic characteristics, namely the mass. The shell mass is lumped along a family of coordinate lines. Therefore, the natural frequencies for each harmonic term can be found from the solution of a typical matrix eigenvalues problem and standard numerical techniques can be applied. The shell response to forced vibrations, particularly to earthquake excitation, can be determined by using conventional procedure either in the time or in the frequency domain. Finally, extending the above procedure, any system of translational shells under dynamic loading can be studied. Then, by using matrix methods, a general computer program is written and applied to some illustrative examples. Numerical results has been obtained in two cases: circular cylindrical shell and box girder bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to reduce costs and time while improving quality, durability and sustainability in structural concrete constructions, a widely used material nowadays, special care must be taken in some crucial phases of the project and execution, including the structure design and calculation, the dosage, dumping and curing of concrete: another important aspect is the proper design and execution of assembly plans and construction details. The framework, a name designating the whole reinforcement bars cage already assembled as shown in the drawings, can be made up of several components and implies higher or lower industrialization degree. The framework costs constitute about one third of the price per cubic meter placed in concrete works. The best solutions from all points of view are clearly those involving an easier processing to achieve the same goal, and consequently carrying a high degree of industrialization, meaning quality and safety in the work. This thesis aims to provide an indepth analysis of a relatively new type of anchoring by plate known as headed reinforcement bars, which can potentially replace standard or L-shaped hooks, improving the cleaning of construction details and enabling a faster, more flexible, and therefore a more economical assembly. A literature review on the topic and an overview of typical applications is provided, followed by some examples of specific applications in real projects. Since a strict theoretical formulation used to provide the design plate dimensions has not yet been put forward, an equation is proposed for the side-face blowout strength of the anchorage, based on the capacity of concrete to carry concentrated loads in cases in which no transverse reinforcement is provided. The correlation of the calculated ultimate load with experimental results available in the literature is given. Besides, the proposed formulation can be expanded to cases in which a certain development length is available: using a software for nonlinear finite element analysis oriented to the study of reinforced concrete, numerical tests on the bond-bearing interaction are performed. The thesis ends with a testing of eight corner joints subjected to a closing moment, held in the Structures Laboratory of the Polytechnic University of Madrid, aiming to check whether the design of such plates as stated is adequate for these elements and whether an element with plate-anchored reinforcement is equivalent to one with a traditional construction detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Monge-Ampére equation method could be the most advanced point source algorithm of freeform optics design. This paper introduces this method, and outlines two key issues that should be tackles to improve this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the chaos in a fractional Duffing’s equation computing the Lyapunov exponents and the dimension of the strange attractor in the effective phase space of the system. We develop a specific analytical method to estimate all Lyapunov exponents and check the results with the fiduciary orbit technique and a time series estimation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact formulation of the linear theory of folded plate structures utilizing matrix methods is given. Different usual approximations and comparison between them are also shown

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer method for the plastic analysis of folded plate structures is presented. The method considers the specific characteristics of the folded plate structural model using a simplified one-dimensional theory. and it can be applied to the analysis of any type of folded pIates, either prismatic or nonprismatic, with arbitrary cross-section. A simple example is analyzed in order to show the possibilities of the procedure and some results of interest are presented