978 resultados para Kinect depth sensor
Resumo:
The deformation behavior and the effect of the loading rate on the plastic deformation features in (numbers indicate at.%) Ce60Al15Cu10Ni15, Ce65Al10Cu10Ni10Nb5, Ce68Al10Cu20Nb2, and Ce70Al10Cu20 bulk metallic glasses (BMGs) were investigated through nanoindentation. The load-displacement (P-h) curves of Ce65Al10Cu10Ni10Nb5, Ce68Al10Cu2, and Ce70Al10Cu20 BMGs exhibited a continuous plastic deformation at all studied loading rate. Whereas, the P-h curves of Ce60Al15Cu10Ni15 BMG showed a quite unique feature, i.e. homogeneous plastic deformation at low loading rates, and a distinct serrated flow at high strain rates. Moreover, a creep deformation during the load holding segment was observed for the four Ce-based BMGs at room temperature. The mechanism for the appearance of the "anomalous" plastic deformation behavior in the Ce-based BMGs was discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We show that the sensor localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we develop fully decentralized versions of the Recursive Maximum Likelihood and the Expectation-Maximization algorithms to localize the network. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a message passing algorithm to propagate the derivatives of the likelihood. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we show that the developed algorithms are able to learn the localization parameters well.
Resumo:
The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D-s and the natural slope angle alpha, the joint inclination angle theta as well as the strength parameters of the joints c(r) ,phi(r) is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.