791 resultados para Kerridge’s inaccuracy measure
Resumo:
University of Buffalo New York Department of Art Gallery. The ancient philosopher Protagoras is most famous for his claim: “Of all things the measure is Man” and today, Western societies continue to promote anthropocentrism, an approach to the world that assumes humans are the principal species of the planet. We naturalize a scale of worth, in which beings that most resemble our own forms or benefit us are valued over those that do not. The philosophy of humanism has been trumpeted as the hallmark of a civilized society, founded on the unquestioned value of humankind defining not only our economic, political, religious, and social systems, but also our ethical code. However, artists recently have questioned whether humanism has actually lived up to its promises and made the world a better place for humankind. Are we better off privileging humans above all else or could there be other, preferable, ways to value life? With the continued prevalence of violent crimes, even genocide, in the twentieth and twenty-first centuries, we see the ways in which the discourse of humanism falters, as groups are targeted through rhetoric reducing them to the subhuman, and therefore disposable. But what if the subhuman, nonhuman, and even the non-animal and material, were reconsidered as objects of worth even if far removed from us?
Resumo:
Recovery and the use of routine outcome measurement tools are key topics for mental health nurses. This article reports on research carried out to assess the usability of an outcome measure designed to assess recovery in clinical practice. Results indicate that the Individual Recovery Outcomes Counter (I.ROC) is both easy to use and well liked by services users.
Resumo:
Teacher feedback influences student learning, identity construction and trajectories. This study tests the measurement properties of a questionnaire designed to assess (a) student perceptions about teacher feedback; (b) student identification with school, and; (c) student engagement. 1089 students in grades 6 through 10 (mean age 13.4) participated in the study. Factor analyses yield dimensions of School Identification, Effective Feedback, Person-Centered Feedback, Engagement, and Social Acceptance. Internal consistency for principal dimensions varied between .77 and .89. The instrument is suitable for assessing student school identification, behavioral engagement, and perceptions of teacher feedback.
Resumo:
PURPOSE: To evaluate quality of life in Portuguese patients with Systemic Lupus Erithematosus (SLE) and its correlation with disease activity and cumulative damage. METHODS: We included consecutive SLE patients, fulfilling the 1997 ACR Classification Criteria for SLE and followed at the Rheumatology Department of the University Hospital of Coimbra, Portugal at time of visit to the outpatient clinic. Quality of life was evaluated using the patient self-assessment questionnaire Medical Outcomes Survey Short Form-36 (SF-36) (validated Portuguese version). The consulting rheumatologist fulfilled the SLE associated indexes for cumulative damage (Systemic Lupus International Collaborating Clinics- Damage Index: SLICC/ACR-DI) and disease activity (Systemic Lupus Erythematosus Disease Activity Index: SLEDAI 2000). Correlation between SLEDAI and SLICC and SF-36 was tested with the Spearman Coefficient. Significant level considered was 0.05. RESULTS: The study included 133 SLE patients (90.2% female, mean age - 40.7 years, mean disease duration - 8.7 years). Most patients presented low disease activity (mean SLEDAI = 4.23) and limited cumulative damage (mean SLICC = 0.76). Despite that, SF-36 mean scores were below 70% in all eight domains of the index. Physical function domains showed lower scores than mental function domains. The QoL in this group of patients is significantly impaired when compared with the reference Portuguese population (p<0.05 in all domains). There was no correlation between clinical activity or cumulative damage and quality of life. CONCLUSION: QoL is significantly compromised in this group of SLE patients, but not related with disease activity or damage. These findings suggest that disease activity, cumulative damage and QoL are independent outcome measures and should all be used to assess the full impact of disease in SLE patients.
Resumo:
Background Physical activity in children with intellectual disabilities is a neglected area of study, which is most apparent in relation to physical activity measurement research. Although objective measures, specifically accelerometers, are widely used in research involving children with intellectual disabilities, existing research is based on measurement methods and data interpretation techniques generalised from typically developing children. However, due to physiological and biomechanical differences between these populations, questions have been raised in the existing literature on the validity of generalising data interpretation techniques from typically developing children to children with intellectual disabilities. Therefore, there is a need to conduct population-specific measurement research for children with intellectual disabilities and develop valid methods to interpret accelerometer data, which will increase our understanding of physical activity in this population. Methods Study 1: A systematic review was initially conducted to increase the knowledge base on how accelerometers were used within existing physical activity research involving children with intellectual disabilities and to identify important areas for future research. A systematic search strategy was used to identify relevant articles which used accelerometry-based monitors to quantify activity levels in ambulatory children with intellectual disabilities. Based on best practice guidelines, a novel form was developed to extract data based on 17 research components of accelerometer use. Accelerometer use in relation to best practice guidelines was calculated using percentage scores on a study-by-study and component-by-component basis. Study 2: To investigate the effect of data interpretation methods on the estimation of physical activity intensity in children with intellectual disabilities, a secondary data analysis was conducted. Nine existing sets of child-specific ActiGraph intensity cut points were applied to accelerometer data collected from 10 children with intellectual disabilities during an activity session. Four one-way repeated measures ANOVAs were used to examine differences in estimated time spent in sedentary, moderate, vigorous, and moderate to vigorous intensity activity. Post-hoc pairwise comparisons with Bonferroni adjustments were additionally used to identify where significant differences occurred. Study 3: The feasibility on a laboratory-based calibration protocol developed for typically developing children was investigated in children with intellectual disabilities. Specifically, the feasibility of activities, measurements, and recruitment was investigated. Five children with intellectual disabilities and five typically developing children participated in 14 treadmill-based and free-living activities. In addition, resting energy expenditure was measured and a treadmill-based graded exercise test was used to assess cardiorespiratory fitness. Breath-by-breath respiratory gas exchange and accelerometry were continually measured during all activities. Feasibility was assessed using observations, activity completion rates, and respiratory data. Study 4: Thirty-six children with intellectual disabilities participated in a semi-structured school-based physical activity session to calibrate accelerometry for the estimation of physical activity intensity. Participants wore a hip-mounted ActiGraph wGT3X+ accelerometer, with direct observation (SOFIT) used as the criterion measure. Receiver operating characteristic curve analyses were conducted to determine the optimal accelerometer cut points for sedentary, moderate, and vigorous intensity physical activity. Study 5: To cross-validate the calibrated cut points and compare classification accuracy with existing cut points developed in typically developing children, a sub-sample of 14 children with intellectual disabilities who participated in the school-based sessions, as described in Study 4, were included in this study. To examine the validity, classification agreement was investigated between the criterion measure of SOFIT and each set of cut points using sensitivity, specificity, total agreement, and Cohen’s kappa scores. Results Study 1: Ten full text articles were included in this review. The percentage of review criteria met ranged from 12%−47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. A lack of measurement research, specifically the calibration/validation of accelerometers for children with intellectual disabilities, is limiting the ability of researchers to make appropriate and valid accelerometer use decisions. Study 2: The choice of cut points had significant and clinically meaningful effects on the estimation of physical activity intensity and sedentary behaviour. For the 71-minute session, estimations for time spent in each intensity between cut points ranged from: sedentary = 9.50 (± 4.97) to 31.90 (± 6.77) minutes; moderate = 8.10 (± 4.07) to 40.40 (± 5.74) minutes; vigorous = 0.00 (± .00) to 17.40 (± 6.54) minutes; and moderate to vigorous = 8.80 (± 4.64) to 46.50 (± 6.02) minutes. Study 3: All typically developing participants and one participant with intellectual disabilities completed the protocol. No participant met the maximal criteria for the graded exercise test or attained a steady state during the resting measurements. Limitations were identified with the usability of respiratory gas exchange equipment and the validity of measurements. The school-based recruitment strategy was not effective, with a participation rate of 6%. Therefore, a laboratory-based calibration protocol was not feasible for children with intellectual disabilities. Study 4: The optimal vertical axis cut points (cpm) were ≤ 507 (sedentary), 1008−2300 (moderate), and ≥ 2301 (vigorous). Sensitivity scores ranged from 81−88%, specificity 81−85%, and AUC .87−.94. The optimal vector magnitude cut points (cpm) were ≤ 1863 (sedentary), ≥ 2610 (moderate) and ≥ 4215 (vigorous). Sensitivity scores ranged from 80−86%, specificity 77−82%, and AUC .86−.92. Therefore, the vertical axis cut points provide a higher level of accuracy in comparison to the vector magnitude cut points. Study 5: Substantial to excellent classification agreement was found for the calibrated cut points. The calibrated sedentary cut point (ĸ =.66) provided comparable classification agreement with existing cut points (ĸ =.55−.67). However, the existing moderate and vigorous cut points demonstrated low sensitivity (0.33−33.33% and 1.33−53.00%, respectively) and disproportionately high specificity (75.44−.98.12% and 94.61−100.00%, respectively), indicating that cut points developed in typically developing children are too high to accurately classify physical activity intensity in children with intellectual disabilities. Conclusions The studies reported in this thesis are the first to calibrate and validate accelerometry for the estimation of physical activity intensity in children with intellectual disabilities. In comparison with typically developing children, children with intellectual disabilities require lower cut points for the classification of moderate and vigorous intensity activity. Therefore, generalising existing cut points to children with intellectual disabilities will underestimate physical activity and introduce systematic measurement error, which could be a contributing factor to the low levels of physical activity reported for children with intellectual disabilities in previous research.
Resumo:
Relational reasoning, or the ability to identify meaningful patterns within any stream of information, is a fundamental cognitive ability associated with academic success across a variety of domains of learning and levels of schooling. However, the measurement of this construct has been historically problematic. For example, while the construct is typically described as multidimensional—including the identification of multiple types of higher-order patterns—it is most often measured in terms of a single type of pattern: analogy. For that reason, the Test of Relational Reasoning (TORR) was conceived and developed to include three other types of patterns that appear to be meaningful in the educational context: anomaly, antinomy, and antithesis. Moreover, as a way to focus on fluid relational reasoning ability, the TORR was developed to include, except for the directions, entirely visuo-spatial stimuli, which were designed to be as novel as possible for the participant. By focusing on fluid intellectual processing, the TORR was also developed to be fairly administered to undergraduate students—regardless of the particular gender, language, and ethnic groups they belong to. However, although some psychometric investigations of the TORR have been conducted, its actual fairness across those demographic groups has yet to be empirically demonstrated. Therefore, a systematic investigation of differential-item-functioning (DIF) across demographic groups on TORR items was conducted. A large (N = 1,379) sample, representative of the University of Maryland on key demographic variables, was collected, and the resulting data was analyzed using a multi-group, multidimensional item-response theory model comparison procedure. Using this procedure, no significant DIF was found on any of the TORR items across any of the demographic groups of interest. This null finding is interpreted as evidence of the cultural-fairness of the TORR, and potential test-development choices that may have contributed to that cultural-fairness are discussed. For example, the choice to make the TORR an untimed measure, to use novel stimuli, and to avoid stereotype threat in test administration, may have contributed to its cultural-fairness. Future steps for psychometric research on the TORR, and substantive research utilizing the TORR, are also presented and discussed.
Resumo:
Locus of control (LOC) has a long tradition in Psychology, and various instruments have been designed for its measurement. However, the dimensionality of the construct is unclear, and still gives rise to considerable controversy. The aim of the present work is to present new evidence of validity in relation to the dimensionality of LOC. To this end, we developed a new measurement instrument with 23 items. The sample was made up of 697 Spanish participants, of whom 57.5% were women (M=22.43; SD= 9.19). The results support the bi-dimensionality of LOC: internal (α=.87) and external (α=.85). Furthermore, both subscales have shown adequate validity evidence in relation to self-efficacy, achievement motivation and optimism (r xy> .21). Statistically significant differences were found by sex (p < .05): men scored higher in external LOC and women in internal LOC. The validity evidence supports a two-dimensional structure for the LOC, and the measurement instrument developed showed adequate psychometric properties.
Resumo:
Liquid-solid interactions become important as dimensions approach mciro/nano-scale. This dissertation focuses on liquid-solid interactions in two distinct applications: capillary driven self-assembly of thin foils into 3D structures, and droplet wetting of hydrophobic micropatterned surfaces. The phenomenon of self-assembly of complex structures is common in biological systems. Examples include self-assembly of proteins into macromolecular structures and self-assembly of lipid bilayer membranes. The principles governing this phenomenon have been applied to induce self-assembly of millimeter scale Si thin films into spherical and other 3D structures, which are then integrated into light-trapping photovoltaic (PV) devices. Motivated by this application, we present a generalized analytical study of the self-folding of thin plates into deterministic 3D shapes, through fluid-solid interactions, to be used as PV devices. This study consists of developing a model using beam theory, which incorporates the two competing components — a capillary force that promotes folding and the bending rigidity of the foil that resists folding into a 3D structure. Through an equivalence argument of thin foils of different geometry, an effective folding parameter, which uniquely characterizes the driving force for folding, has been identified. A criterion for spontaneous folding of an arbitrarily shaped 2D foil, based on the effective folding parameter, is thus established. Measurements from experiments using different materials and predictions from the model match well, validating the assumptions used in the analysis. As an alternative to the mechanics model approach, the minimization of the total free energy is employed to investigate the interactions between a fluid droplet and a flexible thin film. A 2D energy functional is proposed, comprising the surface energy of the fluid, bending energy of the thin film and gravitational energy of the fluid. Through simulations with Surface Evolver, the shapes of the droplet and the thin film at equilibrium are obtained. A critical thin film length necessary for complete enclosure of the fluid droplet, and hence successful self-assembly into a PV device, is determined and compared with the experimental results and mechanics model predictions. The results from the modeling and energy approaches and the experiments are all consistent. Superhydrophobic surfaces, which have unique properties including self-cleaning and water repelling are desired in many applications. One excellent example in nature is the lotus leaf. To fabricate these surfaces, well designed micro/nano- surface structures are often employed. In this research, we fabricate superhydrophobic micropatterned Polydimethylsiloxane (PDMS) surfaces composed of micropillars of various sizes and arrangements by means of soft lithography. Both anisotropic surfaces, consisting of parallel grooves and cylindrical pillars in rectangular lattices, and isotropic surfaces, consisting of cylindrical pillars in square and hexagonal lattices, are considered. A novel technique is proposed to image the contact line (CL) of the droplet on the hydrophobic surface. This technique provides a new approach to distinguish between partial and complete wetting. The contact area between droplet and microtextured surface is then measured for a droplet in the Cassie state, which is a state of partial wetting. The results show that although the droplet is in the Cassie state, the contact area does not necessarily follow Cassie model predictions. Moreover, the CL is not circular, and is affected by the micropatterns, in both isotropic and anisotropic cases. Thus, it is suggested that along with the contact angle — the typical parameter reported in literature quantifying wetting, the size and shape of the contact area should also be presented. This technique is employed to investigate the evolution of the CL on a hydrophobic micropatterned surface in the cases of: a single droplet impacting the micropatterned surface, two droplets coalescing on micropillars, and a receding droplet resting on the micropatterned surface. Another parameter which quantifies hydrophobicity is the contact angle hysteresis (CAH), which indicates the resistance of the surface to the sliding of a droplet with a given volume. The conventional methods of using advancing and receding angles or tilting stage to measure the resistance of the micropatterned surface are indirect, without mentioning the inaccuracy due to the discrete and stepwise motion of the CL on micropillars. A micronewton force sensor is utilized to directly measure the resisting force by dragging a droplet on a microtextured surface. Together with the proposed imaging technique, the evolution of the CL during sliding is also explored. It is found that, at the onset of sliding, the CL behaves as a linear elastic solid with a constant stiffness. Afterwards, the force first increases and then decreases and reaches a steady state, accompanied with periodic oscillations due to regular pinning and depinning of the CL. Both the maximum and steady state forces are primarily dependent on area fractions of the micropatterned surfaces in our experiment. The resisting force is found to be proportional to the number of pillars which pin the CL at the trailing edge, validating the assumption that the resistance mainly arises from the CL pinning at the trailing edge. In each pinning-and-depinning cycle during the steady state, the CL also shows linear elastic behavior but with a lower stiffness. The force variation and energy dissipation involved can also be determined. This novel method of measuring the resistance of the micropatterned surface elucidates the dependence on CL pinning and provides more insight into the mechanisms of CAH.
Resumo:
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
Resumo:
[EN] Herein we investigate the feasibility of detecting photo-induced surface stress changes using the deflection response of cantilevers. For this purpose, silicon microcantilevers have been functionalised with spiropyran photochromic molecules, using both a monolayer and a polymeric brushes approach. Uponultraviolet light irradiation, the spiropyran unit is converted to the merocyanine form due to the photo-induced cleavage of the Cspiro-O bond. The two forms of the molecule have dramatically different charge,polarity and molecular conformations. This makes spiropyrans an ideal system to study the correlation between photo-induced molecular changes and corresponding changes in surface stress. Our investigations include monitoring the changes in static cantilever deflection, and consequently, surface stress of the spiropyran functionalised cantilevers on exposure to ultraviolet light. Cantilever deflection data reveals that ultraviolet induced conformational changes in the spiropyran moiety cause a change incompressive surface stress and this varies with the type of functionalisation method implemented. The change in surface stress response from the spiropyran polymer brushes functionalised cantilevers gives an average surface stress change of 98 Nm−1(n = 24) while the spiropyran monolayer coated cantilevers have an average surface stress change of about 446 Nm−1(n = 8) upon irradiation with UV light.
Resumo:
Background and aims: A gluten-free diet is to date the only treatment available to celiac disease sufferers. However, systematic reviews indicate that, depending on the method of evaluation used, only 42% to 91% of patients adhere to the diet strictly. Transculturally adapted tools that evaluate adherence beyond simple self-informed questions or invasive analyses are, therefore, of importance. The aim is to obtain a Spanish transcultural adaption and validation of Leffler's Celiac Dietary Adherence Test. Methods: A two-stage observational transversal study: translation and back translation by four qualified translators followed by a validation stage in which the questionnaire was administered to 306 celiac disease patients aged between 12 and 72 years and resident in Aragon. Factorial structure, criteria validity and internal consistency were evaluated. Results: The Spanish version maintained the 7 items in a 3-factor structure. Feasibility was very high in all the questions answered and the floor and ceiling effects were very low (4.3% and 1%, respectively). The Spearman correlation with the self-efficacy and life quality scales and the self-informed question were statistically significant (p < 0.01). According to the questionnaire criteria, adherence was 72.3%. Conclusion: The Spanish version of the Celiac Dietary Adherence Test shows appropriate psychometric properties and is, therefore, suitable for studying adherence to a gluten-free diet in clinical and research environments.
Resumo:
Doutoramento em Gestão Interdisciplinar da Paisagem - Instituto Superior de Agronomia / Universidade dos Açores / Universidade de Évora