994 resultados para KOI-55 planets
Resumo:
Etheno adducts in DNA arise from multiple endogenous and exogenous sources. Of these adducts we have reported that, 1,N6-ethenoadenine (ɛA) and 3,N4-ethenocytosine (ɛC) are removed from DNA by two separate DNA glycosylases. We later confirmed these results by using a gene knockout mouse lacking alkylpurine-DNA-N-glycosylase, which excises ɛA. The present work is directed toward identifying and purifying the human glycosylase activity releasing ɛC. HeLa cells were subjected to multiple steps of column chromatography, including two ɛC-DNA affinity columns, which resulted in >1,000-fold purification. Isolation and renaturation of the protein from SDS/polyacrylamide gel showed that the ɛC activity resides in a 55-kDa polypeptide. This apparent molecular mass is approximately the same as reported for the human G/T mismatch thymine-DNA glycosylase. This latter activity copurified to the final column step and was present in the isolated protein band having ɛC-DNA glycosylase activity. In addition, oligonucleotides containing ɛC⋅G or G/T(U), could compete for ɛC protein binding, further indicating that the ɛC-DNA glycosylase is specific for both types of substrates in recognition. The same substrate specificity for ɛC also was observed in a recombinant G/T mismatch DNA glycosylase from the thermophilic bacterium, Methanobacterium thermoautotrophicum THF.
Resumo:
The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.