1000 resultados para José Lins do Rego. Literatura. Engenho. Construção simbólica
Resumo:
The static and cyclic assays are common to test materials in structures.. For cycling assays to assess the fatigue behavior of the material and thereby obtain the S-N curves and these are used to construct the diagrams of living constant. However, these diagrams, when constructed with small amounts of S-N curves underestimate or overestimate the actual behavior of the composite, there is increasing need for more testing to obtain more accurate results. Therewith, , a way of reducing costs is the statistical analysis of the fatigue behavior. The aim of this research was evaluate the probabilistic fatigue behavior of composite materials. The research was conducted in three parts. The first part consists of associating the equation of probability Weilbull equations commonly used in modeling of composite materials S-N curve, namely the exponential equation and power law and their generalizations. The second part was used the results obtained by the equation which best represents the S-N curves of probability and trained a network to the modular 5% failure. In the third part, we carried out a comparative study of the results obtained using the nonlinear model by parts (PNL) with the results of a modular network architecture (MN) in the analysis of fatigue behavior. For this we used a database of ten materials obtained from the literature to assess the ability of generalization of the modular network as well as its robustness. From the results it was found that the power law of probability generalized probabilistic behavior better represents the fatigue and composites that although the generalization ability of the MN that was not robust training with 5% failure rate, but for values mean the MN showed more accurate results than the PNL model
Resumo:
An alternative box-type solar cooker built starting from the scrap of a tire and a scrap of old office chair is presented, which principles functions are the effect greenhouse and the concentration. The tire served as structure for making of is the baking enclosure where the absorber (roasting pan 20x30cm) of the solar is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven/cook for the concentration of the radiation and a reflecting parable was introduced in the baking enclosure for the exploitation of the incident reflected radiation inside of the oven/cook. The oven/cook is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove/cook in study will be demonstrate. The average internal temperature of the absorber was around 152,3°C and the internal temperature around 110°C. Will demonstrate that toits low cost and good thermal performance, represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
We studied the feasibility of using a system of Solar Water Heating (SAS) with low cost, for three configurations. In configurations I and II have the collector grid absorber composed of six PVC tubes placed in parallel on the tile cement. In configuration II, the PVC tubes were transparent cover made of plastic bottles. Configuration III uses a collector composed of 12 black HDPE pipes, supported on four cement tiles 2.44 m x 0.50 m, two by two overlapping and interspersed with a filling of glass wool, comprising an area exposed to the global radiation incident of 2.44 m2, with the top two tiles painted matte black. In this configuration, the HDPE pipes replace conventional PVC pipes painted black. The total cost of SAS for configuration III, the most economical, was around $ 150.00. For the configurations tested the system of operation was thermosyphon collector. The study showed that the proposed systems have good thermal efficiency, are easy to install and handle and have low cost compared to conventional.
Resumo:
We built an experimental house on an UFRN´s land using blocks made by a composite consisting of cement, plaster, EPS, crushed rubber and sand. Several blocks were made from various compositions and we made preliminary tests of mechanical and thermal resistance, choosing the most appropriate proportion. PET bottles were used inside the block to provide thermal resistance. In this work, a second function was given to the bottles: to serve as a docking between the blocks, because the ends of the cylinders came out of each block on top as well as at the bottom, with the bottom cut, allowing to fit of the extremities of the upper cylinder of a block in the lower holes of the other one, which were formed by the cutting already mentioned. Minimum compression tests were performed according to ABNT standards for walls closing blocks (fence). With that house built, we did studies of thermal performance in order to ascertain conditions of comfort, checking external and internal temperatures in the walls and in the ambient, among other variables, such as wind speed and relative humidity. The resulting blocks provided adequate thermal insulation to the environment, where the walls presented differences up to 11.7 ºC between the outer and inner faces, getting the maximum temperature inside the house around 31 °C, within the so-called thermal comfort zone for warm climates. At the end of the experiments it was evident the effectiveness of that construction in order to provide thermal comfort in the internal environment of the house, as well as we could confirm the viability of building houses from recyclable materials, reducing the constructive costs, becoming a suitable alternative for low- incoming families. Moreover, besides the low cost, the proposal represents an alternative use of various recyclable materials, therefore considered an ecological solution
Resumo:
It was studied a system for heating water to be used to obtain water for bathing at home, the absorbing surface of the collector is formed by one plate of polycarbonate. The polycarbonate plate has 6 mm thick, 1.050 mm wide and 1.500 mm long with an area equal to 1,575 m². The plate was attached by its edges parallel to PVC tubes of 32 mm. The system worked under the thermo-siphon and was tested for two configurations: plate absorber with and without isolation of EPS of 30 mm thick on the bottom surface in order to minimize heat losses from the bottom. The tank's thermal heating system is alternative and low cost, since it was constructed from a polyethylene reservoir for water storage, with a volume of 200 liters. Will present data on the thermal efficiency, heat loss, water temperature of thermal reservoir at the end of the process simulation and baths. Will be demonstrated the feasibility of thermal, economic and material pickup proposed for the intended purpose.
Resumo:
We present two models of blocks made of composite material obtained from the use of cement, plaster, EPS crushed, shredded tire, mud, sand and water, for the construction of popular housing. Were made metal molds for the manufacture of blocks to be used in the construction of a residence for low-income families. Performed tests of compressive strength of the composite for various formulations that met the specific standard for blocks used in construction. To study the thermal conductivity of the composite for further study of thermal comfort generated in a residence built with the proposed composite. We also determined the mass-specific and water absorption for each formulation studied. Using a home already built with another composite material, made up the closing of a window with the building blocks and found the thermal insulation, measuring external and internal temperatures of the blocks. The blocks had made good thermal insulation of the environment, resulting in differences of up to 12.6°C between the outer and inner faces. It will be shown the feasibility of using composite for the end proposed and chosen the most appropriate wording
Resumo:
Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work
Resumo:
It presents a direct exposure to solar dryer for drying of food, built from a scrap of luminaire. The dryer works under direct exposure to natural circulation. Will be presented their methods of construction and assembly of that dryer that allows the reuse of materials, constituting a environmentally correct recycling dryer main features proposed are its low cost and simple manufacturing processes and assembly. Test results will be presented for the drying of foods that prove the feasibility and cost of thermal solar drying alternative system proposed. It is worth emphasizing the social importance that such application is for the most excluded since the value-added fruits, vegetables, legumes and other foods in relation to fresh may represent an option of income generation. It will also study the transformation of some of dry food meal and demonstrated that the drying times for the foods tested are competitive and sometimes pointed in the solar literature
Resumo:
With a view to revitalizing public environments through criteria that include economy, tourism, aesthetics and respect for the environment, this paper proposes a model of kiosk manufactured with composite material blocks, to be employed as a public instrument. . The model consists of a structure composed of planned blocks and manufactured in cement-based composite, gypsum, ground and water, having the styrofoam inside filled with pet bottles of 500 ml dose. The social and environmental issue is the critical point of the work when it can, through the reuse of environmentally harmful materials such as polyethylene terephthalate PET, using such modules for the construction of various areas of Commerce, promoting the protection of the environment combined with the improvement of the quality of life of the population. The tourism factor, which is significant in the economy of the North, is also considered as the modulated kiosk has a visual aspect innovative and differentiated. The environmental issue is addressed by encouraging the reuse of PET material and EPS (polystyrene)
Resumo:
The scarcity of farmland, reducing the supply of irrigation water and lack of technologies for conservation, makes the globalized world facing serious difficulties in the production of food for its population. The most viable outlet for this dilemma is the dissemination of technologies, economically viable and available to the whole population, for dehydration of perishable foods produced. This paper presents a solar dryer of direct exposure to the production of dried fruit, made from recycled polyethylene drum of 200 liters, used for storing water or trash. The drum was sectioned in half in its longitudinal axis and has its halves together forming a trough-like structure. It describes the processes of construction and assembly of solar dryer proposed, whose main characteristic its low cost, and was designed for use by people with low income, for processing fruits widely available in our region (mango, banana, guava, cashew, pineapple, tomato and others) in dried fruit and flour, contributing significantly to increase the life of these foods. The nuts and flours can be used for own consumption and for marketing jobs and income generation. Tests were conducted to diagnose the feasibility of using solar dryer for the various types of tropical fruits. Were also compared parameters such as drying times and thermal efficiency obtained with the prototype found in the specialized literature in food dehydration. The drying times in the dryer were obtained competitive with those obtained in other models of dryers LMHES developed
Resumo:
The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.
Resumo:
During the process of the salt production, the first the salt crystals formed are disposed of as industrial waste. This waste is formed basically by gypsum, composed of calcium sulfate dihydrate (CaSO4.2H2O), known as carago cru or malacacheta . After be submitted the process of calcination to produce gypsum (CaSO4.0,5H2O), can be made possible its application in cement industry. This work aims to optimize the time and temperature for the process of calcination of the gypsum (carago) for get beta plaster according to the specifications of the norms of civil construction. The experiments involved the chemical and mineralogical characterization of the gypsum (carago) from the crystallizers, and of the plaster that is produced in the salt industry located in Mossoró, through the following techniques: x-ray diffraction (XRD), x-ray fluorescence (FRX), thermogravimetric analysis (TG/DTG) and scanning electron microscopy (SEM) with EDS. For optimization of time and temperature of the process of calcination was used the planning three factorial with levels with response surfaces of compressive mechanical tests and setting time, according norms NBR-13207: Plasters for civil construction and x-ray diffraction of plasters (carago) beta obtained in calcination. The STATISTICA software 7.0 was used for the calculations to relate the experimental data for a statistical model. The process for optimization of calcination of gypsum (carago) occurred in the temperature range from 120° C to 160° C and the time in the range of 90 to 210 minutes in the oven at atmospheric pressure, it was found that with the increase of values of temperature of 160° C and time calcination of 210 minutes to get the results of tests of resistance to compression with values above 10 MPa which conform to the standard required (> 8.40) and that the X-ray diffractograms the predominance of the phase of hemidrato beta, getting a beta plaster of good quality and which is in accordance with the norms in force, giving a by-product of the salt industry employability in civil construction
Resumo:
The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils
Resumo:
O desenvolvimento de um processo democrático de avaliação institucional na UNESP, uma universidade multi-campus, envolveu três desafios: garantir o envolvimento de grupos representativos da comunidade no processo de avaliação; atribuir poder e responsabilidade a cada setor acadêmico e administrativo no processo de avaliação; criar uma cultura de auto-avaliação e reflexão que possibilitasse debate crítico e auto-gestão dos projetos acadêmicos. Com base nos termos de referência estabelecidos pela comunidade a CPA desenvolveu uma metodologia de avaliação democrática e investigativa, orientada para a auto-gestão e de natureza quali-quantitativa. Fundamentada em três enfoques teóricos de avaliação, o democrático, o de tomada de decisão e o crítico o processo envolveu três funções: a diagnóstica, a formativo-reflexiva e a de revisão crítica. Atualmente os usos dos resultados da avaliação para orientar políticas e decisões acadêmicas, especialmente nos cursos de graduação, evidenciam avanços no processo de internalização de cultura de avaliação orientada para auto-gestão.