993 resultados para Joint reconstruction
Resumo:
As natural disasters continue to escalate in frequency and magnitude, NGOs are faced with numerous barriers as they attempt to implement post-disaster reconstruction (PDR) projects. In many cases, a lack of competency in key areas leads to a reduction in overall project success. This paper utilizes the competency-based framework of von Meding et al. (2010) as the starting point of its inquiry. In this context, a leading NGO responsible for the implementation of reconstruction and rehabilitation in Sri Lanka following the Asian Tsunami has been investigated in depth using a causal mapping interview procedure with key project staff. The combined barriers within this organization’s PDR operations have been identified and measured and solutions articulated. The study found that within this organization key objectives were to achieve the ‘build back better’ mantra and to effectively plan interventions in advance. The primary barriers to successful reconstruction were identified as the high turnover rate of humanitarian staff and a poor level of communication and co-operation between agencies. An essential strategy employed to combat these barriers is the consideration of staff capabilities, which links us back to competence-based theory. The results are highly valuable in the context of an ongoing wider research study on competence within humanitarian organizations.
A preliminary Study of the Effects of medio-Lateral Rotation on Stresses in the Artificial Hip Joint
Resumo:
The site Pilgrimstad in central Sweden has often been cited as a key locality for discussions of ice-free/ice-covered intervals during the Early and Middle Weichselian. Multi-proxy investigations of a recently excavated section at Pilgrimstad now provide a revised picture of the climatic and environmental development between similar to 80 and 36 ka ago. The combination of sedimentology, geochemistry, OSL and 14C dating, and macrofossil, siliceous microfossil and chironomid analyses shows: (i) a lower succession of glaciofluvial/fluvial, lacustrine and glaciolacustrine sediments; (ii) an upper lacustrine sediment sequence; and (iii) Last Glacial Maximum till cover. Microfossils in the upper lacustrine sediments are initially characteristic for oligo- to mesotrophic lakes, and macrofossils indicate arctic/sub-arctic environments and mean July temperatures > 8 degrees C. These conditions were, however, followed by a return to a low-nutrient lake and a cold and dry climate. The sequence contains several hiatuses, as shown by the often sharp contacts between individual units, which suggests that ice-free intervals alternated with possible ice advances during certain parts of the Early and Middle Weichselian.
Resumo:
Purpose: This paper reports the findings of the evaluation of the Supporting People Health Pilots programme, which was established to demonstrate the policy links between housing support services and health and social care services by encouraging the development of integrated services. The paper highlights the challenges Method: The evaluation of the six health pilots rested on two main sources of data collection: Quarterly Project Evaluation Reports collected process data as well as reporting progress against aims and objectives. Semi-structured interviews—conducted across all key professional stakeholder groups and agencies and with people who used services—explored their experiences of these new services. Results: The ability of pilots to work across organisational boundaries to achieve their aims and objectives was associated not only with agencies sharing an understanding of the purpose of the joint venture, a history of joint working and clear and efficient governance arrangements but on two other characteristics: the extent and nature of statutory sector participation and, whether or not the service is defined by a history of voluntary sector involvement. In particular the pilots demonstrated how voluntary sector agencies appeared to be less constrained by organisational priorities and professional agenda and more able to respond flexibly to meet the complex needs of individuals. Conclusion and discussion: The pilots demonstrate that integrating services to support people with complex needs works best
Resumo:
Reliable prediction of long-term medical device performance using computer simulation requires consideration of variability in surgical procedure, as well as patient-specific factors. However, even deterministic simulation of long-term failure processes for such devices is time and resource consuming so that including variability can lead to excessive time to achieve useful predictions. This study investigates the use of an accelerated probabilistic framework for predicting the likely performance envelope of a device and applies it to femoral prosthesis loosening in cemented hip arthroplasty.
A creep and fatigue damage failure model for bone cement, in conjunction with an interfacial fatigue model for the implant–cement interface, was used to simulate loosening of a prosthesis within a cement mantle. A deterministic set of trial simulations was used to account for variability of a set of surgical and patient factors, and a response surface method was used to perform and accelerate a Monte Carlo simulation to achieve an estimate of the likely range of prosthesis loosening. The proposed framework was used to conceptually investigate the influence of prosthesis selection and surgical placement on prosthesis migration.
Results demonstrate that the response surface method is capable of dramatically reducing the time to achieve convergence in mean and variance of predicted response variables. A critical requirement for realistic predictions is the size and quality of the initial training dataset used to generate the response surface and further work is required to determine the recommendations for a minimum number of initial trials. Results of this conceptual application predicted that loosening was sensitive to the implant size and femoral width. Furthermore, different rankings of implant performance were predicted when only individual simulations (e.g. an average condition) were used to rank implants, compared with when stochastic simulations were used. In conclusion, the proposed framework provides a viable approach to predicting realistic ranges of loosening behaviour for orthopaedic implants in reduced timeframes compared with conventional Monte Carlo simulations.
Resumo:
This study provides a general diversity analysis for joint complex diversity coding (CDC) and channel coding-based space-time-frequency codeing is provided. The mapping designs from channel coding to CDC are crucial for efficient exploitation of the diversity potential. This study provides and proves a sufficient condition of full diversity construction with joint three-dimensional CDC and channel coding, bit-interleaved coded complex diversity coding and symbol-interleaved coded complex diversity coding. Both non-iterative and iterative detections of joint channel code and CDC transmission are investigated. The proposed minimum mean-square error-based iterative soft decoding achieves the performance of the soft sphere decoding with reduced complexity.