994 resultados para Jaw Fixation Techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodological survey of microsphere formation and microencapsulation techniques based on solvent extraction/evaporation techniques is presented. Thus, basic features of solvent extraction and solvent evaporation processes, including droplet formation, droplet/particle stabilization, and solvent removal, are outlined. Preparation of a wide range of microspherical and microcapsular products based on biodegradable polyesters, polysaccharides, and nonbiodegradable polymers are discussed. Dependence of microcapsule characteristics on manufacturing parameters, as well as performance evaluation of microspherical and microcapsular products, are also briefly covered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt porphyrin complex ((TPPCoX)-X-III) (TPP = 5, 10, 15, 20-Tetraphenylporphyrin; X = halide) in combination with ionic organic ammonium salt was used for the regio-specific copolymerization of propylene oxide and carbon dioxide. A turnover frequency of 188 h(-1) was achieved after 5 h, and the byproduct propylene carbonate was successfully controlled to below 1%, where the obtained poly(propylene carbonate) (PPC) showed number average molecular weight (M-n) of 48 kg/mol, head-to-tail content of 93%, and carbonate linkage of over 99%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions of Ln(III) acetate (Ln = Pr and Nd) and a polydentate Schiff-base in a mixture of methanol and acetonitrile resulted in the unprecedented assembly of novel Ln(10) aggregates containing two Ln(5) pentagons templated by mu(5)-CO32-, introduced via spontaneous fixation of atmospheric carbon dioxide. Magnetic analysis using an expression including the ligand field effects and molecular field approximation indicates weak antiferromagnetic coupling between the metal ions. This synthetic approach may represent a promising new route toward the design of new lanthanide clusters and novel multifunctional materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general procedure to determine the absolute configuration of cyclic secondary amines with Mosher's NMR method is demonstrated, with assignment of absolute configuration of isoanabasine as an example. Each Mosher amide can adopt two stable conformations (named rotamers) caused by hindered rotation around amide C-N bond. Via a three-step structural analysis of four rotamers, the absolute configuration of (-)-isoanabasine is deduced to be (R) on the basis of Newman projections, which makes it easy to understand and clarify the application of Mosher's method to cyclic secondary amines. Furthermore, it was observed that there was an unexpected ratio of rotamers of Mosher amide derived from (R)-isoanabasine and (R)-Mosher acid. This phenomenon implied that it is necessary to distinguish the predominant rotamer from the minor one prior to determining the absolute configuration while using this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.