879 resultados para Iteration Scheme
Resumo:
Here the results for CD4+T cells count and the viral load obtained from HIV sero-positive patients are compared with results from numerical simulations by computer. Also, the standard scheme of administration of drugs anti HIV (HAART schemes) which uses constant doses is compared with an alternative sub-optimal teatment scheme which uses variable drug dosage according to the evolution of a quantitative measure of the side effects. The quantitative analysis done here shows that it is possible to obtain, using the alternative scheme, the same performance of actual data but using variable dosage and having fewer side effects. Optimal control theory is used to solve and also to provide a prognosis related to the strategies for control of viraemia.
Resumo:
In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search of infrared finite solutions, paying particular attention to the role of the seagull graph in enforcing transversality, the necessity of introducing massless poles in the three-gluon vertex, and the incorporation of the correct renormalization group properties. In addition, we present a method for regulating the seagull-type contributions based on dimensional regularization; its applicability depends crucially on the asymptotic behavior of the solutions in the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles belonging to different Lorentz structures. The resulting integral equation is then solved numerically, the infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is determined. Various open questions and possible connections with different approaches in the literature are discussed. © SISSA 2006.
Resumo:
Includes bibliography
Resumo:
This paper is concerned with an overview of upwinding schemes, and further nonlinear applications of a recently introduced high resolution upwind differencing scheme, namely the ADBQUICKEST [V.G. Ferreira, F.A. Kurokawa, R.A.B. Queiroz, M.K. Kaibara, C.M. Oishi, J.A.Cuminato, A.F. Castelo, M.F. Tomé, S. McKee, assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems, International Journal for Numerical Methods in Fluids 60 (2009) 1-26]. The ADBQUICKEST scheme is a new TVD version of the QUICKEST [B.P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering 19 (1979) 59-98] for solving nonlinear balance laws. The scheme is based on the concept of NV and TVD formalisms and satisfies a convective boundedness criterion. The accuracy of the scheme is compared with other popularly used convective upwinding schemes (see, for example, Roe (1985) [19], Van Leer (1974) [18] and Arora & Roe (1997) [17]) for solving nonlinear conservation laws (for example, Buckley-Leverett, shallow water and Euler equations). The ADBQUICKEST scheme is then used to solve six types of fluid flow problems of increasing complexity: namely, 2D aerosol filtration by fibrous filters; axisymmetric flow in a tubular membrane; 2D two-phase flow in a fluidized bed; 2D compressible Orszag-Tang MHD vortex; axisymmetric jet onto a flat surface at low Reynolds number and full 3D incompressible flows involving moving free surfaces. The numerical simulations indicate that this convective upwinding scheme is a good generic alternative for solving complex fluid dynamics problems. © 2012.
Resumo:
Incluye Bibliografía
Resumo:
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier-Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1-D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion-based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non-Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas-solid flow in a bubbling fluidized bed. © 2013 John Wiley & Sons, Ltd.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Social security planning in the Caribbean: contributory provident fund scheme with draft legislation
Resumo:
Incluye Bibliografía
Resumo:
The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.
Resumo:
This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.
Resumo:
Dynamic conferencing refers to a scenario wherein any subset of users in a universe of users form a conference for sharing confidential information among themselves. The key distribution (KD) problem in dynamic conferencing is to compute a shared secret key for such a dynamically formed conference. In literature, the KD schemes for dynamic conferencing either are computationally unscalable or require communication among users, which is undesirable. The extended symmetric polynomial based dynamic conferencing scheme (ESPDCS) is one such KD scheme which has a high computational complexity that is universe size dependent. In this paper we present an enhancement to the ESPDCS scheme to develop a KD scheme called universe-independent SPDCS (UI-SPDCS) such that its complexity is independent of the universe size. However, the UI-SPDCS scheme does not scale with the conference size. We propose a relatively scalable KD scheme termed as DH-SPDCS that uses the UI-SPDCS scheme and the tree-based group Diffie- Hellman (TGDH) key exchange protocol. The proposed DH-SPDCS scheme provides a configurable trade-off between computation and communication complexity of the scheme.