920 resultados para Ischemic Attack, Transient
Resumo:
To report a rare side effect of gamma knife treatment of pituitary macroadenoma.
Resumo:
Syncope is defined as an acute, brief and transient loss of consciousness and postural tone with spontaneous and complete recovery. Neurovascular ultrasound has contributed to elucidate the underlying mechanism of different types of syncope. In routine diagnostic work-up of patients with syncope, however, neurovascular ultrasound is not among the first line tools. In particular, an ultrasound search for occlusive cerebro-vascular disease is of limited value because cerebral artery obstruction is a very rare and questionable cause of syncope. Transcranial Doppler sonography monitoring of the cerebral arteries is useful in the diagnostic work-up of patients with suspicion of postural related, cerebrovascular, cough and psychogenic syncope, and in some cases for differentiating focal epileptic seizures from transient ischemic attacks and migraine with aura.
Resumo:
Objective: Description of a cat with ischemic muscle necrosis that suffered from cardiopulmonary arrest due to hyperkalemia. Pathogenesis, clinical signs and therapy of ischemic muscle necrosis are discussed and possible causes, symptoms and treatment of hyperkalemia are shown. Material and methods: case report of a four-year-old male castrated domestic shorthair cat. Results: The cat was successfully resuscitated and hyperkalemia was treated with different treatment modalities. Conclusion: Ischemic muscle necrosis can lead to severe live-threatening hyperkalemia which has to be anticipated, monitored and treated adequately. Aggressive fluid therapy might be responsible for a higher risk of hyperkalemia in predisposed cases. Clinical relevance: Potassium concentrations and acid-base disturbances must be closely monitored in patients with ischemic muscle necrosis
Resumo:
Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.
Resumo:
BACKGROUND: We assessed the incidence of early recurrent ischemic stroke in stroke patients treated with intravenous tissue-type plasminogen activator (tPA) and the temporal pattern of its occurrence compared with symptomatic intracranial hemorrhage (ICH). METHODS AND RESULTS: Prospectively collected, population-based data for 341 consecutive acute stroke patients (62% men; mean age, 66 years) treated with tPA according to the National Institute of Neurological Disorders and Stroke study protocol at 8 medical centers in Switzerland (3 academic and 5 community) between January 2001 and November 2004 were retrospectively analyzed. The primary outcome measure was neurological deterioration > or = 4 points on the National Institutes of Health Stroke Scale occurring within 24 hours of tPA treatment and caused either by recurrent ischemic stroke (defined as the occurrence of new neurological symptoms suggesting involvement of initially unaffected vascular territories and evidence of corresponding ischemic lesions on cranial computed tomography scans, in the absence of ICH) or by ICH. Early recurrent ischemic stroke was diagnosed in 2 patients (0.59%; 95% confidence interval, 0.07% to 2.10%) and symptomatic ICH in 15 patients (4.40%; 95% confidence interval, 2.48% to 7.15%). Both recurrent ischemic strokes occurred during thrombolysis, whereas symptomatic ICHs occurred 2 to 22 hours after termination of tPA infusion. CONCLUSIONS: Recurrent ischemic stroke is a rare cause of early neurological deterioration in acute stroke patients undergoing intravenous thrombolysis, with a different temporal pattern compared with that of symptomatic ICH.
Resumo:
We examined the seasonal variability of spontaneous cervical artery dissection (sCAD) by analysing prospectively collected data from 352 patients with 380 sCAD (361 symptomatic sCAD; 305 carotid and 75 vertebral artery dissections) admitted to two university hospitals with a catchment area of 2,200,000 inhabitants between 1985 and 2004. Presenting symptoms and signs of the 380 sCAD were ischaemic stroke in 241 (63%), transient ischaemic attack in 40 (11%), retinal ischemia in seven (2%), and non-ischaemic in 73 (19%) cases; 19 (5%) were asymptomatic sCAD. A seasonal pattern, with higher frequency of sCAD in winter (31.3%; 95% confidence interval (CI): 26.5 to 36.4; p=0.021) compared to spring (25.5%; 95% CI: 21.1 to 30.3), summer (23.5%; 95% CI: 19.3 to 28.3), and autumn (19.7%; 95% CI: 15.7 to 24.1) was observed. Although the cause of seasonality in sCAD is unclear, the winter peaks of infection, hypertension, and aortic dissection suggest common underlying mechanisms.
Resumo:
BACKGROUND/AIMS: We investigated the molecular response of a non-ischemic hypoxic stress in the liver, in particular, to distinguish its hepatoprotective potential. METHODS: The livers of mice were subjected to non-ischemic hypoxia by clamping the hepatic-artery (HA) for 2h while maintaining portal circulation. Hypoxia was defined by a decrease in oxygen saturation, the activation of hypoxia-inducible factor (HIF)-1 and the mRNA up-regulation of responsive genes. To demonstrate that the molecular response to hypoxia may in part be hepatoprotective, pre-conditioned animals were injected with an antibody against Fas (Jo2) to induce acute liver failure. Hepatocyte apoptosis was monitored by caspase-3 activity, cleavage of lamin A and animal survival. RESULTS: Clamping the HA induced a hypoxic stress in the liver in the absence of severe metabolic distress or tissue damage. The hypoxic stimulus was sufficient to activate the HIF-1 signalling pathway and up-regulate hepatoprotective genes. Pre-conditioning the liver with hypoxia was able to delay the onset of Fas-mediated apoptosis and prolong animal survival. CONCLUSIONS: Our data reveal that hepatic cells can sense and respond to a decrease in tissue oxygenation, and furthermore, that activation of hypoxia-inducible signalling pathways function in part to promote liver cell survival.
Resumo:
BACKGROUND AND PURPOSE: It is unclear whether intraarterial (IAT) or intravenous (IVT) thrombolysis is more effective for ischemic stroke with hyperdense middle cerebral artery sign (HMCAS) on computed tomography (CT). The aim of this study was to compare IAT and IVT in stroke patients with HMCAS. METHODS: Comparison of data from 2 stroke units with similar management of stroke associated with HMCAS, except that 1 unit performed IAT with urokinase and the other IVT with plasminogen activator. Time to treatment was up to 6 hours for IAT and up to 3 hours for IVT. Outcome was measured by mortality and the modified Rankin Scale (mRS), dichotomized at 3 months into favorable (mRS 0 to 2) and unfavorable (mRS 3 to 6). RESULTS: One hundred twelve patients exhibited a HMCAS, 55 of 268 patients treated with IAT and 57 of 249 patients who underwent IVT. Stroke severity at baseline and patient age were similar in both groups. Mean time to treatment was longer in the IAT group (244+/-63 minutes) than in the IVT group (156+/-21 minutes; P=0.0001). However, favorable outcome was more frequent after IAT (n=29, 53%) than after IVT (n=13, 23%; P=0.001), and mortality was lower after IAT (n=4, 7%) than after IVT (n=13, 23%; P=0.022). After multiple regression analysis IAT was associated with a more favorable outcome than IVT (P=0.003) but similar mortality (P=0.192). CONCLUSIONS: In this observational study intraarterial thrombolysis was more beneficial than IVT in the specific group of stroke patients presenting with HMCAS on CT, even though IAT was started later. Our results indicate that a randomized trial comparing both thrombolytic treatments in patients with middle cerebral artery occlusion is warranted.
Resumo:
Major progress has recently been made in the neuro-imaging of stroke as a result of improvements in imaging hardware and software. Imaging may be based on either magnetic resonance imaging (MRI) or computed tomography (CT) techniques. Imaging should provide information on the entire vascular cervical and intracranial network, from the aortic arch to the circle of Willis. Equally, it should also give information on the viability of brain tissue and brain hemodynamics. CT has the advantage in the detection of acute hemorrhage whereas MRI offers more accurate pathophysiological information in the follow-up of patients.
Resumo:
BACKGROUND AND PURPOSE: The purpose of the study was to compare efficacy and potential complications of 2 commercially available devices for mechanical thromboembolectomy. METHODS: Devices were tested in an established animal model allowing the use of routine angiography catheters and thrombectomy devices. Radio-opaque thrombi were used for visualization of thrombus-device interaction during angiography. The Merci Retrieval System and the Catch Thromboembolectomy System were assessed each in 10 vessel occlusions. For every occluded vessel up to 5 retrieval attempts were performed. RESULTS: Sufficient recanalization was achieved with the Merci Retriever in 90% of occlusions, and with the Catch device recanalization was achieved in 70% of occlusions. Recanalization at the first attempt occurred significantly more often with the Merci Retriever compared to the Catch device (OR, 21; 95% CI, 1.78-248.11). Consequently, significantly more attempts (P=0.02) had to be performed with the Catch device; therefore, time to recanalization was longer. Thrombus fragmentations during retrieval were caused more often by the Catch device compared to the Merci Retriever (OR, 15.6; 95% CI, 1.73-140.84), resulting in a higher distal embolization rate. During retrieval both devices lost thrombotic material at the tip of the guide catheter, which was then aspirated in most cases. CONCLUSIONS: Both distal devices are effective for thromboembolectomy. To avoid loss of thrombotic material and distal embolization, the use of large luminal balloon guide catheters and aspiration during retrieval seems to be mandatory. The design of the Merci Retriever appears to be more efficient during thrombus mobilization and retrieval with less fragmentation compared to the Catch Thromboembolectomy System.