958 resultados para Intestinal epithelium
Resumo:
CD40 and its ligand regulate pleiotropic biological responses, including cell proliferation, differentiation, and apoptosis. In many inflammatory lung diseases, tissue damage by environmental or endogenous oxidants plays a major role in disease pathogenesis. As the epithelial barrier is a major target for these oxidants, we postulated that CD40, the expression of which is increased in asthma, plays a role in the regulation of apoptosis of bronchial epithelial cells exposed to oxidants. Using 16HBE 14o- cells exposed to oxidant stress, we found that ligation of CD40 (induced by G28-5 monoclonal antibodies) enhanced cell survival and increased the number of cells in G2/M (interphase between DNA synthesis and mitosis) of the cell cycle. This was associated with NF-kappaB and activator protein-1 activation and increased expression of the inhibitor of apoptosis, c-IAP1. However, oxidant stress-induced apoptosis was found to be caspase- and calpain-independent implicating CD40 ligation as a regulator of caspase-independent cell death. This was confirmed by the demonstration that CD40 ligation prevented mitochondrial release and nuclear translocation of apoptosis inducing factor. In conclusion, we demonstrate a novel role for CD40 as a regulator of epithelial cell survival against oxidant stress. Furthermore, we have identified, for the first time, an endogenous inhibitory pathway of caspase-independent cell death.
Resumo:
OBJECTIVES: To evaluate the effects on intestinal oxygen supply, and mucosal tissue oxygen tension during haemorrhage and after fluid resuscitation with either blood (B; n=7), gelatine (G; n=8), or lactated Ringer's solution (R; n=8) in an autoperfused, innervated jejunal segment in anaesthetized pigs. METHODS: To induce haemorrhagic shock, 50% of calculated blood volume was withdrawn. Systemic haemodynamics, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. A flowmeter was used for measuring mesenteric arterial blood flow. Mucosal tissue oxygen tension (PO(2)muc), jejunal microvascular haemoglobin oxygen saturation (HbO(2)) and microvascular blood flow were measured. Measurements were performed at baseline, after haemorrhage and at four 20 min intervals after fluid resuscitation. After haemorrhage, animals were retransfused with blood, gelatine or lactated Ringer's solution until baseline pulmonary capillary wedge pressure was reached. RESULTS: After resuscitation, no significant differences in macrohaemodynamic parameters were observed between groups. Systemic and intestinal lactate concentration was significantly increased in animals receiving lactated Ringer's solution [5.6 (1.1) vs 3.3 (1.1) mmol litre(-1); 5.6 (1.1) vs 3.3 (1.2) mmol litre(-1)]. Oxygen supply to the intestine was impaired in animals receiving lactated Ringer's solution when compared with animals receiving blood. Blood and gelatine resuscitation resulted in higher HbO(2) than with lactated Ringer's resuscitation after haemorrhagic shock [B, 43.8 (10.4)%; G, 34.6 (9.4)%; R, 28.0 (9.3)%]. PO(2)muc was better preserved with gelatine resuscitation when compared with lactated Ringer's or blood resuscitation [20.0 (8.8) vs 13.8 (7.1) mm Hg, 15.2 (7.2) mm Hg, respectively]. CONCLUSION: Blood or gelatine infusion improves mucosal tissue oxygenation of the porcine jejunum after severe haemorrhage when compared with lactated Ringer's solution.
Resumo:
Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.
Resumo:
PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.
Resumo:
We characterized changes in the visual behavior of mice in which a loss of the retinal pigment epithelium (RPE) was experimentally induced with intravenous (i.v.) administration of sodium iodate (NaIO3). We compared and correlated these changes with alterations in neural retinal structure and function. RPE loss was induced in 4-6 week old male C57BL/6 mice with an i.v. injection of 1% NaIO3 at three concentrations: 35, 50, or 70 mg/kg. At 1, 3, 7, 14, 21, and 28 days (d) as well as 6 months post injection (PI) a behavioral test was performed in previously trained mice to evaluate visual function. Eye morphology was then assessed for changes in both the RPE and neural retina. NaIO3-induced RPE degeneration was both dose and PI time dependent. Our low dose showed no effects, while our high dose caused the most damage, as did longer PI times at our intermediate dose. Using the intermediate dose, no changes were detectable in either visual behavior or retinal morphology at 1 d PI. However, at 3 d PI visual behavior became abnormal and patchy RPE cell loss was observed. From 7 d PI onward, changes in retinal morphology and visual behavior became more severe. At 6 months PI, no recovery was seen in any of these measures in mice administered the intermediate dose. These results show that NaIO3 dosage and/or time PI can be varied to produce different, yet permanent deficits in retinal morphology and visual function. Thus, this approach should provide a unique system in which the onset and severity of RPE damage, and its consequences can be manipulated. As such, it should be useful in the assessment of rescue or mitigating effects of retinal or stem cell transplantation on visual function.
Resumo:
OBJECTIVE: To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. SAMPLE POPULATION: Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. PROCEDURES: Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (A(max)), and area under the curve (AUC) were evaluated. RESULTS: Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M(3) antagonists (more commonly for basal tone than for A(max) and AUC). The M(2) receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M(3) receptor antagonists were generally more potent than the M(2) receptor antagonists. In a protection experiment, an M(3) receptor antagonist was less potent than when used in combination with an M(2) receptor antagonist. Receptor antagonists for M(1) and M(4) did not affect contractility variables. CONCLUSIONS AND CLINICAL RELEVANCE: Bethanechol acting on muscarinic receptor sub-types M(2) and M(3) may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows.
Resumo:
Liver receptor homolog-1 (LRH-1) is a nuclear receptor involved in intestinal lipid homeostasis and cell proliferation. Here we show that haploinsufficiency of LRH-1 predisposes mice to the development of intestinal inflammation. Besides the increased inflammatory response, LRH-1 heterozygous mice exposed to 2,4,6-trinitrobenzene sulfonic acid show lower local corticosterone production as a result of an impaired intestinal expression of the enzymes CYP11A1 and CYP11B1, which control the local synthesis of corticosterone in the intestine. Local glucocorticoid production is strictly enterocyte-dependent because it is robustly reduced in epithelium-specific LRH-1-deficient mice. Consistent with these findings, colon biopsies of patients with Crohn's disease and ulcerative colitis show reduced expression of LRH-1 and genes involved in the production of glucocorticoids. Hence, LRH-1 regulates intestinal immunity in response to immunological stress by triggering local glucocorticoid production. These findings underscore the importance of LRH-1 in the control of intestinal inflammation and the pathogenesis of inflammatory bowel disease.
Resumo:
Digestion of starch requires activities provided by 6 interactive small intestinal enzymes. Two of these are luminal endo-glucosidases named alpha-amylases. Four are exo-glucosidases bound to the luminal surface of enterocytes. These mucosal activities were identified as 4 different maltases. Two maltase activities were associated with sucrase-isomaltase. Two remaining maltases, lacking other identifying activities, were named maltase-glucoamylase. These 4 activities are better described as alpha-glucosidases because they digest all linear starch oligosaccharides to glucose. Because confusion persists about the relative roles of these 6 enzymes, we ablated maltase-glucoamylase gene expression by homologous recombination in Sv/129 mice. We assayed the alpha-glucogenic activities of the jejunal mucosa with and without added recombinant pancreatic alpha-amylase, using a range of food starch substrates. Compared with wild-type mucosa, null mucosa or alpha-amylase alone had little alpha-glucogenic activity. alpha-Amylase amplified wild-type and null mucosal alpha-glucogenesis. alpha-Amylase amplification was most potent against amylose and model resistant starches but was inactive against its final product limit-dextrin and its constituent glucosides. Both sucrase-isomaltase and maltase-glucoamylase were active with limit-dextrin substrate. These mucosal assays were corroborated by a 13C-limit-dextrin breath test. In conclusion, the global effect of maltase-glucoamylase ablation was a slowing of rates of mucosal alpha-glucogenesis. Maltase-glucoamylase determined rates of digestion of starch in normal mice and alpha-amylase served as an amplifier for mucosal starch digestion. Acarbose inhibition was most potent against maltase-glucoamylase activities of the wild-type mouse. The consortium of 6 interactive enzymes appears to be a mechanism for adaptation of alpha-glucogenesis to a wide range of food starches.
Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)
Resumo:
Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal subunit enzyme of human small intestinal maltase-glucoamylase (rhMGAM-N) was used to explore digestion of native starches from different botanical sources. The susceptibilities to enzyme hydrolysis varied among the starches. The rate and extent of hydrolysis of amylomaize-5 and amylomaize-7 into glucose were greater than for other starches. Such was not observed with fungal amyloglucosidase or pancreatic alpha-amylase. The degradation of native starch granules showed a surface furrowed pattern in random, radial, or tree-like arrangements that differed substantially from the erosion patterns of amyloglucosidase or alpha-amylase. The evidence of raw starch granule degradation with rhMGAM-N indicates that pancreatic alpha-amylase hydrolysis is not a requirement for native starch digestion in the human small intestine.
Resumo:
Triggering receptor expressed on myeloid cells-1 (TREM-1) potently amplifies acute inflammatory responses by enhancing degranulation and secretion of proinflammatory mediators. Here we demonstrate that TREM-1 is also crucially involved in chronic inflammatory bowel diseases (IBD). Myeloid cells of the normal intestine generally lack TREM-1 expression. In experimental mouse models of colitis and in patients with IBD, however, TREM-1 expression in the intestine was upregulated and correlated with disease activity. TREM-1 significantly enhanced the secretion of relevant proinflammatory mediators in intestinal macrophages from IBD patients. Blocking TREM-1 by the administration of an antagonistic peptide substantially attenuated clinical course and histopathological alterations in experimental mouse models of colitis. This effect was also seen when the antagonistic peptide was administered only after the first appearance of clinical signs of colitis. Hence, TREM-1-mediated amplification of inflammation contributes not only to the exacerbation of acute inflammatory disorders but also to the perpetuation of chronic inflammatory disorders. Furthermore, interfering with TREM-1 engagement leads to the simultaneous reduction of production and secretion of a variety of pro-inflammatory mediators such as TNF, IL-6, IL-8 (CXCL8), MCP-1 (CCL2), and IL-1beta. Therefore, TREM-1 may also represent an attractive target for the treatment of chronic inflammatory disorders.
Resumo:
PURPOSE: The aim of the present study was to investigate whether bone marrow-derived cells (BMCs) can be induced to express retinal pigment epithelial (RPE) cell markers in vitro and can home to the site of RPE damage after mobilization and express markers of RPE lineage in vivo. METHODS: Adult RPE cells were cocultured with green fluorescence protein (GFP)-labeled stem cell antigen-1 positive (Sca-1(+)) BMCs for 1, 2, and 3 weeks. Cell morphology and expression of RPE-specific markers and markers for other retinal cell types were studied. Using an animal model of sodium iodate (NaIO(3))-induced RPE degeneration, BMCs were mobilized into the peripheral circulation by granulocyte-colony stimulating factor, flt3 ligand, or both. Immunocytochemistry was used to identify and characterize BMCs in the subretinal space in C57BL/6 wild-type (wt) mice and GFP chimeric mice. RESULTS: In vitro, BMCs changed from round to flattened, polygonal cells and expressed cytokeratin, RPE65, and microphthalmia transcription factor (MITF) when cocultured in direct cell-cell contact with RPE. In vivo, BMCs were identified in the subretinal space as Sca-1(+) or c-kit(+) cells. They were also double labeled for GFP and RPE65 or MITF. These cells formed a monolayer on the Bruch membrane in focal areas of RPE damage. CONCLUSIONS: Thus, it appears that BMCs, when mobilized into the peripheral circulation, can home to focal areas of RPE damage and express cell markers of RPE lineage. The use of endogenous BMCs to replace damaged retinal tissue opens new possibilities for cell replacement therapy in ophthalmology.
Resumo:
The formation of an intestinal stoma is one of the most frequent operations in visceral surgery. Despite new operative techniques and a more restrictive use of the stoma, the stoma formation remains an often necessary surgical procedure, which results to a dramatic change in the patients' life. The stoma formation and its later closure are associated with a high morbidity. Many complications, such as stoma necrosis, stoma retraction or stoma prolapse, are related to surgical mistakes made during stoma formation. These complications are therefore largely avoidable. The stoma formation needs careful planning together with a professional stoma nursing team. Moreover, it is mandatory that the stoma formation is made with great care and that it meticulously follows the well established surgical principles. A perfectly placed, technically correctly fashioned and easy to care for stoma is essential for a good patients'quality of life.