988 resultados para Internal friction
Resumo:
Maerl is a type of rhodolith, found in ecologically important beds of high conservation value; a major conservation objective is to establish growth rates. Maerl shows internal banding of controversial periodicity that may contain a high-resolution record of palaeoceanographic-palaeoclimatic data. To investigate growth rates and banding periodicity, we used the vital stain Alizarin Red in combination with scanning electron microscopy (SEM). Three maerl species, Phymatolithon calcareum, Lithothamnion corallioides and L. glaciale, were collected from maerl beds in Ireland. Following staining, maerl was grown in three controlled temperature treatments and at two depths in the field (P. calcareum only), with Corallina officinalis as a control for the stain. Alizarin Red was shown to be a suitable marker for growth in European maerl species and for C. officinalis. The average tip growth rate of P. calcareum from Northern Ireland at 10 m depth and under constant laboratory conditions was c. 0.9 mm yr(-1), double the rates observed at 5 m depth and in L. corallioides. Our measurements and re-examination of reported data allow us to conclude that the three most abundant maerl species in Europe grow about 1 (0.5-1.5) mm per tip per year under a wide range of field and artificial conditions. Internal banding in temperate European maerl revealed by SEM is a result of regular changes in wall thickness; the approximately monthly periodicity of bands in field-grown specimens is consistent with previous suggestions that they may be lunar. The potential for maerl banding to be a high-resolution record of palaeoclimatic and palaeoenvironmental change could be realized with this vital stain in conjunction with isotopic or microgeochemical analyses.
Resumo:
Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.
Resumo:
This paper investigates a possible application of Preisach model to control shape memory alloy (SMA) actuators using an internal model control strategy. The developed strategy consists in including the Preisach hysteresis model of SMA actuator and the inverse Preisach model within the control structure. In this work, an extrema input hystory and a fuzzy inference is utilized to replace the classical Preisach model. This allows to reduce a large amount of experimental parameters and computation time of the classical Preisach model. To demonstrate the effectiveness of the proposed controller in improving control performance and hysteresis compensation of SMA actuators, experimental results from real time control are presented.
Resumo:
We have investigated the presence of the aerobactin system and the location of the aerobactin genes in enteroinvasive strains of Escherichia coli. Also, we cloned the aerobactin region and its flanking sequences from the chromosome of a strain of Shigella flexneri and compared the molecular organization of the aerobactin genes in the two genera. Of the 11 enteroinvasive E. coli strains studied, 5 possessed the aerobactin genes, which were located on the chromosome in each case. These strains produced and utilized aerobactin and also were susceptible to the bacteriocin cloacin-DF13. Restriction endonuclease mapping and hybridization experiments showed that the regions corresponding to the aerobactin-specific sequences were very similar in both enteroinvasive E. coli and S. flexneri. However, differences were found in the region corresponding to the aerobactin receptor gene. The regions flanking the aerobactin system in enteroinvasive E. coli and S. flexneri exhibited some similarities but were different from those in pColV-K30. Under iron-limiting conditions, aerobactin-producing enteroinvasive E. coli and S. flexneri synthesized outer-membrane proteins of 76 and 77 kDa, respectively, which cross-reacted immunologically with rabbit antiserum raised against the 74 kDa pColV-K30-encoded ferric aerobactin receptor.