882 resultados para Intelligent mechatronics
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
Our work is concerned with user modelling in open environments. Our proposal then is the line of contributions to the advances on user modelling in open environments thanks so the Agent Technology, in what has been called Smart User Model. Our research contains a holistic study of User Modelling in several research areas related to users. We have developed a conceptualization of User Modelling by means of examples from a broad range of research areas with the aim of improving our understanding of user modelling and its role in the next generation of open and distributed service environments. This report is organized as follow: In chapter 1 we introduce our motivation and objectives. Then in chapters 2, 3, 4 and 5 we provide the state-of-the-art on user modelling. In chapter 2, we give the main definitions of elements described in the report. In chapter 3, we present an historical perspective on user models. In chapter 4 we provide a review of user models from the perspective of different research areas, with special emphasis on the give-and-take relationship between Agent Technology and user modelling. In chapter 5, we describe the main challenges that, from our point of view, need to be tackled by researchers wanting to contribute to advances in user modelling. From the study of the state-of-the-art follows an exploratory work in chapter 6. We define a SUM and a methodology to deal with it. We also present some cases study in order to illustrate the methodology. Finally, we present the thesis proposal to continue the work, together with its corresponding work scheduling and temporalisation
Resumo:
Este trabajo pretende estudiar los aspectos referentes a la usabilidad de los smart TV realizando un análisis de sus funciones más comunes y concluyendo con propuestas para la mejora de la usabilidad de estos dispositivos.
Resumo:
The Mechatronics Research Centre (MRC) owns a small scale robot manipulator called aMini-Mover 5. This robot arm is a microprocessor-controlled, six-jointed mechanical armdesigned to provide an unusual combination of dexterity and low cost.The Mini-Mover-5 is operated by a number of stepper motors and is controlled by a PCparallel port via a discrete logic board. The manipulator also has an impoverished array ofsensors.This project requires that a new control board and suitable software be designed to allow themanipulator to be controlled from a PC. The control board will also provide a mechanism forthe values measured using some sensors to be returned to the PC.On this project I will consider: stepper motor control requirements, sensor technologies,power requirements, USB protocols, USB hardware and software development and controlrequirements (e.g. sample rates).In this report we will have a look at robots history and background, as well as we willconcentrate how stepper motors and parallel port work
Resumo:
El presente trabajo final de carrera desarrolla una aplicación real para dispositivos móviles, con sistema operativo Android, que sirve de guía hipermedia de los molinos de gofio de Canarias.
Resumo:
This paper introduces how artificial intelligence technologies can be integrated into a known computer aided control system design (CACSD) framework, Matlab/Simulink, using an object oriented approach. The aim is to build a framework to aid supervisory systems analysis, design and implementation. The idea is to take advantage of an existing CACSD framework, Matlab/Simulink, so that engineers can proceed: first to design a control system, and then to design a straightforward supervisory system of the control system in the same framework. Thus, expert systems and qualitative reasoning tools are incorporated into this popular CACSD framework to develop a computer aided supervisory system design (CASSD) framework. Object-variables an introduced into Matlab/Simulink for sharing information between tools
Resumo:
L’estudi que es realitza en aquest projecte/treball final de carrera queda englobat dins del grup de recerca MICE (Modal Intervals Control and Engeneering), el qual realitzainvestigacions entorn al control de glucèmia. Aquest grup de recerca vinculat a la Universitat de Girona col•labora amb l’Hospital Universitari Dr. Josep Trueta de Girona. La temàtica principal tractarà de realitzar el control de glucèmia en pacients crítics, que es troben ingressats en la unitat de cures intensives de qualsevol hospital. Com a conseqüència d’aquesta problemàtica, s’ha implementat en un entorn virtual, un pacient el qual simula la situació d’un pacient real en la unitat de cures intensives. El model emprat per a la obtenció del model de pacient virtual és el desenvolupat per Chase et al. (2005), el qual mitjançant variables com l’alimentació enteral i la sensibilitat insulínica, es podien realitzar assajos reals per a validar protocols de control ‘in silico’ per posteriorment realitzar assajos amb població real
Resumo:
Game theory is a branch of applied mathematics used to analyze situation where two or more agents are interacting. Originally it was developed as a model for conflicts and collaborations between rational and intelligent individuals. Now it finds applications in social sciences, eco- nomics, biology (particularly evolutionary biology and ecology), engineering, political science, international relations, computer science, and philosophy. Networks are an abstract representation of interactions, dependencies or relationships. Net- works are extensively used in all the fields mentioned above and in many more. Many useful informations about a system can be discovered by analyzing the current state of a network representation of such system. In this work we will apply some of the methods of game theory to populations of agents that are interconnected. A population is in fact represented by a network of players where one can only interact with another if there is a connection between them. In the first part of this work we will show that the structure of the underlying network has a strong influence on the strategies that the players will decide to adopt to maximize their utility. We will then introduce a supplementary degree of freedom by allowing the structure of the population to be modified along the simulations. This modification allows the players to modify the structure of their environment to optimize the utility that they can obtain.
Resumo:
In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems
Resumo:
Drug development has improved over recent decades, with refinements in analytical techniques, population pharmacokinetic-pharmacodynamic (PK-PD) modelling and simulation, and new biomarkers of efficacy and tolerability. Yet this progress has not yielded improvements in individualization of treatment and monitoring, owing to various obstacles: monitoring is complex and demanding, many monitoring procedures have been instituted without critical assessment of the underlying evidence and rationale, controlled clinical trials are sparse, monitoring procedures are poorly validated and both drug manufacturers and regulatory authorities take insufficient account of the importance of monitoring. Drug concentration and effect data should be increasingly collected, analyzed, aggregated and disseminated in forms suitable for prescribers, along with efficient monitoring tools and evidence-based recommendations regarding their best use. PK-PD observations should be collected for both novel and established critical drugs and applied to observational data, in order to establish whether monitoring would be suitable. Methods for aggregating PK-PD data in systematic reviews should be devised. Observational and intervention studies to evaluate monitoring procedures are needed. Miniaturized monitoring tests for delivery at the point of care should be developed and harnessed to closed-loop regulated drug delivery systems. Intelligent devices would enable unprecedented precision in the application of critical treatments, i.e. those with life-saving efficacy, narrow therapeutic margins and high interpatient variability. Pharmaceutical companies, regulatory agencies and academic clinical pharmacologists share the responsibility of leading such developments, in order to ensure that patients obtain the greatest benefit and suffer the least harm from their medicines.
Resumo:
This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.