993 resultados para Instrument testing
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Rapport de recherche
Resumo:
Un résumé en anglais est également disponible.
Resumo:
Research in which children undergo genetic testing for predisposition to adult-onset diseases or disorders can lead to a better understanding of these conditions. It can possibly also help encourage early detection and the development of clinical and preventive interventions for those found to be at increased hereditary risk. Increasingly, predisposition testing is becoming part of pediatric genetic research. However, the paucity of normative texts about the conduct of pediatric research using predisposition genetic testing generates complex legal and ethical issues. Drawing on the current texts that govern predisposition genetic testing in research and the norms of pediatric research, we outline points of consensus and divergence as well as recommendations regarding predisposition genetic testing in pediatric research.
Resumo:
Genetic testing technologies are rapidly moving from the research laboratory to the market place. Very little scholarship considers the implications of private genetic testing for a public health care system such as Canada’s. It is critical to consider how and if these tests should be marketed to, and purchased by, the public. It is also imperative to evaluate the extent to which genetic tests are or should be included in Canada’s public health care system, and the impact of allowing a two-tiered system for genetic testing. A series of threshold tests are presented as ways of clarifying whether a genetic test is morally appropriate, effective and safe, efficient and appropriate for public funding and whether private purchase poses special problems and requires further regulation. These thresholds also identify the research questions around which professional, public and policy debate must be sustained: What is a morally acceptable goal for genetic services? What are the appropriate benefits? What are the risks? When is it acceptable that services are not funded under health care? And how can the harms of private access be managed?
Resumo:
L'introduction de nouvelles biotechnologies dans tout système de soins de santé est un processus complexe qui est étroitement lié aux facteurs économiques, politiques et culturels, et, par conséquent, demande de remettre en cause plusieurs questions sociales et éthiques. Dans la situation particulière de l’Argentine - c’est-à-dire: de grandes inégalités sociales entre les citoyens, la rareté des ressources sanitaires, l’accès limité aux services de base, l’absence de politiques spécifiques - l'introduction de technologies génétiques pose de sérieux défis qui doivent impérativement être abordés par les décideurs politiques. Ce projet examine le cas des tests génétiques prénataux dans le contexte du système de santé argentin pour illustrer comment leur introduction peut être complexe dans une nation où l’accès égale aux services de santé doit encore être amélioré. Il faut également examiner les restrictions légales et les préceptes religieux qui influencent l'utilisation des technologies génétiques, ce qui souligne la nécessite de développer un cadre de référence intégral pour le processus d'évaluation des technologies afin d’appuyer l’élaboration de recommandations pour des politiques cohérentes et novatrices applicables au contexte particulier de l’Argentine.