897 resultados para Initial Unloading Slope
Resumo:
The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individualbased model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions. The NetCDF file contains model grid coordinates and bottom topography.
Resumo:
Sites 545 and 547 collectively penetrated 629 m of mid-Cretaceous strata (upper Aptian to upper Cenomanian) off central Morocco during Leg 79 of the Deep Sea Drilling Project. Site 545, at the base of the steep Mazagan Escarpment, records a virtually complete succession of hemipelagic sediments of early late Aptian to middle Cenomanian age. Minor faunal recycling occurred throughout much of the upper Aptian to middle Albian part of the sequence (Cores 55 through 41), reflecting bottom currents along the Mazagan Escarpment. This may be related to the strong upwelling regime and high surface water productivity over Site 545 during the latest Aptian through middle Albian. The upwelling system ceased rather abruptly in this area in late middle Albian time. Recycling of older strata by bottom currents also ceased in the late middle Albian and resulted in a slower average accumulation rate in the upper Albian to middle Cenomanian section of Site 545 (Cores 40 through 28). However, intervals of pebbly claystone conglomerates in Cores 40 and 34 record sporadic instability in the slope adjacent to Site 545. Site 547, located only about 15 km seaward, is situated in a small sub-basin adjacent to the basement block drilled by Site 544. It contains an expanded upper Albian to upper Cenomanian sequence as a result of the numerous conglomeratic intervals throughout much of the section. In contrast to Site 545, the conglomerates were not derived from older strata cropping out on the Mazagan Escarpment; rather, they originated penecontemporaneously from a local unstable slope. A detailed biostratigraphic framework based on planktonic foraminifers is established for the mid-Cretaceous sections of Sites 545 and 547 and a new composite zonal scheme is proposed for the early late Aptian through early late Cenomanian interval. Fifty-five species are recognized and illustrated
Resumo:
Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.
Resumo:
Cenozoic planktonic foraminiferal biostratigraphy at DSDP-IPOD Leg 80 sites documents the existence of regionwide stratigraphic gaps in the Paleocene and middle Miocene. Episodes of carbonate dissolution also occurred during the Paleocene at several sites, particularly at Site 549, where destruction of foraminiferal tests may obscure evidence of an unconformity. The middle Miocene hiatus is apparent at each site where Neogene sediments were continuously cored. Upper Miocene sediments at Site 550 (the only abyssal site) are characterized by moderate to extensive dissolution of planktonic foraminifers, but they contain abundant specimens of Bolboforma that mark this stratigraphic interval (von Daniels and Spiegler, 1974, doi:10.1007/BF02986990; Roegl, 1976, doi:10.2973/dsdp.proc.35.133.1976; Murray, 1979, doi:10.2973/dsdp.proc.48.116.1979; Müller et al., 1985, doi:10.2973/dsdp.proc.80.117.1985). Although foraminiferal evidence is not conclusive, nannofossils indicate a widespread Oligocene unconformity (Müller, 1985). Several oceanographic factors, not just simple sea-level change, probably interacted to produce these regional unconformities. There are also dramatic differences in the Cenozoic sedimentary record among Leg 80 sites, indicating that each has had a distinct geologic history. The thickness of the Cenozoic section varies from 100 m at Site 551 to 471 m at Site 548. The thickness of individual chronostratigraphic units also varies, as do the number and stratigraphic position of unconformities other than those mentioned. Differences in the stratigraphic record from site to site across the continental slope result from (1) location in separate half-graben structures, (2) varying location across the developing margin, and (3) difference in position relative to the seaward edge of the enclosing half-graben. Except for turbidites, deposition at Site 550 (abyssal) was largely independent of developments on the continental slope; but it was affected by oceanographic events widespread in the North Atlantic.
Resumo:
Heavy and light minerals were examined in 29 samples from Sites 494, 498, 499, 500, and 495 on the Deep Sea Drilling Project Leg 67 Middle America Trench transect; these sites represent lower slope, trench, and oceanic crust environments off Guatemala. All samples are Quaternary except those from Hole 494A (Pliocene) and Hole 498A (Miocene). Heavy-mineral assemblages of the Quaternary sediments are characterized by an immature pyroxene-amphibole suite with small quantities of olivine and epidote. The Miocene sediments yielded an assemblage dominated by epidote and pyroxene but lacking olivine; the absence of olivine is attributed to selective removal of the most unstable components by intrastratal solution. Light-mineral assemblages of all samples are predominantly characterized by volcanic glass and plagioclase feldspar. The feldspar compositions are compatible with andesitic source rocks and frequently exhibit oscillatory zoning. The heavy- and light-mineral associations of these sediments suggest a proximal volcanic source, most probably the Neogene highland volcanic province of Guatemala. Sand-sized components from Site 495 are mainly biogenic skeletons and volcanic glass and, in one instance (Section 495-5-3), euhedral crystals of gypsum.