938 resultados para Inhibition And Kinetic Studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the carbolithiation of 6-N,N-dimethylamino fulvene (3a) and different lithiated aryl species [p-N,N-dimethylanilinyl lithium, p-anisyl lithium and 4-lithio-benzo[1.3]dioxole (2a-c)], the corresponding lithium cyclopentadienide intermediates 4a-c were formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised and aryl-substituted titanocenes 5a-c. When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 54, 45 and 26 mu M for titanocenes 5a, b and c, respectively. The most cytotoxic titanocene in this paper, 5c is approximately 10 times less cytotoxic than cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, but approximately 100 times better than titanocene dichloride. (C) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the carbolithiation of 6-N,N-dimethylamino fulvene (3a) and different ortho-lithiated indole derivatives (5-methoxy-N-methylindole, N-methylindole and N,N-dimethylaminomethylindole), the corresponding lithium cyclopentadienide intermediate (4a-c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised titanocenes (5a-c). When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 37 and 71 mu M for titanocenes 5a and 5b respectively. The most cytotoxic titanocene in this paper, 5c showed an IC50 value of 8.4 mu M is found to be almost as cytotoxic as cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, and titanocene 5c is approximately 250 times better than titanocene dichloride itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dinuclear complex [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)(2)-3,5](2)(2-)) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)(2)-2,6](-)) followed by a reaction with 2,2':6',2 ''-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 are compared with those of the closely related [(tpy)Ru-II(NCN-NCN)Ru-II(tpy)](PF6)(2) (NCN-NCN = [C6H2(CH2- NMe2)(2)-3,5](2)(2-)) obtained by two-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4). The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4) and one-electron oxidation of [(tpy)Ru-II(PCP-PCP)RUII(tpy)]Cl-2 yielded the mixed-valence species [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) and [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+), respectively. The comproportionation equilibrium constants K-c (900 and 748 for [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](4+) and [(tpy)Ru-II(PCP-PCP)RUII(tpy)](2+), respectively) determined from cyclic voltammetric data reveal comparable stability of the [Ru-III-Ru-II] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+) and [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new tri-functional ligand iBu2NCOCH2SOCH2CONiBu2 was prepared and characterized. The coordination chemistry of this ligand with uranyl nitrate was studied with IR, 1H NMR, electrospray mass-spectrometry, thermogravimetry, and elemental analysis. The structure of [UO2(NO3)2(iBu2NCOCH2SOCH2CONiBu2)] was determined by single-crystal X-ray diffraction. The uranium(VI) ion is surrounded by eight oxygens in a hexagonal bipyramidal geometry. Four oxygens from two nitrates and two oxygens from the ligand form a planar hexagon. The ligand is a bidentate chelate, bonding through sulfoxo and one of the carbamoyl groups to uranyl nitrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new cadmium(II) complexes [Cd-2(bz)(4)(H2O)(4)(mu 2-hmt)]center dot Hbz center dot H2O (1), [Cd-3(bz)(6)(H2O)(6)(mu 2-hmt)(2)]center dot 6H(2)O (2), [Cd(pa)(2)(H2O)(mu(2)-hmt)](n) (3), and {[Cd-3(ac)(6)(H2O)(3)(mu(3)-hmt)(2)]center dot 6H(2)O}(n) (4) with hexamine (hmt) and monocarboxylate ions, benzoate (bz), phenylacetate (pa), or acetate (ac) have been synthesized and characterized structurally. Structure determinations reveal that 1 is dinuclear, 2 is trinuclear, 3 is a one-dimensional (1D) infinite chain, and 4 is a two-dimensional (2D) polymer with fused hexagonal rings consisting of Cd-II and hmt. All the Cd-II atoms in the four complexes (except one CdII in 2) possess seven-coordinate pentagonal bipyramidal geometry with the various chelating bidentate carboxylate groups in equatorial sites. One of the CdII ions in 2, a complex that contains two monodentate carboxylates is in a distorted octahedral environment. The bridging mode of hmt is mu 2- in complexes 1-3 but is mu 3- in complex 4. In all complexes, there are significant numbers of H-bonds, C-H/pi, and pi-pi interactions which play crucial roles in forming the supramolecular networks. The importance of the noncovalent interactions in terms of energies and geometries has been analyzed using high level ab initio calculations. The effect of the cadmium coordinated to hmt on the energetic features of the C-H/pi interaction is analyzed. Finally, the interplay between C-H/pi and pi-pi interactions observed in the crystal structure of 3 is also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty affects all aspects of the property market but one area where the impact of uncertainty is particularly significant is within feasibility analyses. Any development is impacted by differences between market conditions at the conception of the project and the market realities at the time of completion. The feasibility study needs to address the possible outcomes based on an understanding of the current market. This requires the appraiser to forecast the most likely outcome relating to the sale price of the completed development, the construction costs and the timing of both. It also requires the appraiser to understand the impact of finance on the project. All these issues are time sensitive and analysis needs to be undertaken to show the impact of time to the viability of the project. The future is uncertain and a full feasibility analysis should be able to model the upside and downside risk pertaining to a range of possible outcomes. Feasibility studies are extensively used in Italy to determine land value but they tend to be single point analysis based upon a single set of “likely” inputs. In this paper we look at the practical impact of uncertainty in variables using a simulation model (Crystal Ball ©) with an actual case study of an urban redevelopment plan for an Italian Municipality. This allows the appraiser to address the issues of uncertainty involved and thus provide the decision maker with a better understanding of the risk of development. This technique is then refined using a “two-dimensional technique” to distinguish between “uncertainty” and “variability” and thus create a more robust model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A square-planar compound [Cu(pyrimol)Cl] (pyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenolate) abbreviated as CuL–Cl) is described as a biomimetic model of the enzyme galactose oxidase (GOase). This copper(II) compound is capable of stoichiometric aerobic oxidation of activated primary alcohols in acetonitrile/water to the corresponding aldehydes. It can be obtained either from Hpyrimol (HL) or its reduced/hydrogenated form Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol; H2L) readily converting to pyrimol (L-) on coordination to the copper(II) ion. Crystalline CuL–Cl and its bromide derivative exhibit a perfect square-planar geometry with Cu–O(phenolate) bond lengths of 1.944(2) and 1.938(2) Å. The cyclic voltammogram of CuL–Cl exhibits an irreversible anodic wave at +0.50 and +0.57 V versus ferrocene/ferrocenium (Fc/Fc+) in dry dichloromethane and acetonitrile, respectively, corresponding to oxidation of the phenolate ligand to the corresponding phenoxyl radical. In the strongly donating acetonitrile the oxidation path involves reversible solvent coordination at the Cu(II) centre. The presence of the dominant CuII–L. chromophore in the electrochemically and chemically oxidised species is evident from a new fairly intense electronic absorption at 400–480 nm ascribed to a several electronic transitions having a mixed pi-pi(L.) intraligand and Cu–Cl -> L. charge transfer character. The EPR signal of CuL–Cl disappears on oxidation due to strong intramolecular antiferromagnetic exchange coupling between the phenoxyl radical ligand (L.) and the copper(II) centre, giving rise to a singlet ground state (S = 0). The key step in the mechanism of the primary alcohol oxidation by CuL–Cl is probably the alpha-hydrogen abstraction from the equatorially bound alcoholate by the phenoxyl moiety in the oxidised pyrimol ligand, Cu–L., through a five-membered cyclic transition state.