941 resultados para Information storage and retrieval systems -- Design
Resumo:
Goal-directed, coordinated movements in humans emerge from a variety of constraints that range from 'high-level' cognitive strategies based oil perception of the task to 'low-level' neuromuscular-skeletal factors such as differential contributions to coordination from flexor and extensor muscles. There has been a tendency in the literature to dichotomize these sources of constraint, favouring one or the other rather than recognizing and understanding their mutual interplay. In this experiment, subjects were required to coordinate rhythmic flexion and extension movements with an auditory metronome, the rate of which was systematically increased. When subjects started in extension on the beat of the metronome, there was a small tendency to switch to flexion at higher rates, but not vice versa. When subjects: were asked to contact a physical stop, the location of which was either coincident with or counterphase to the auditor) stimulus, two effects occurred. When haptic contact was coincident with sound, coordination was stabilized for both flexion and extension. When haptic contact was counterphase to the metronome, coordination was actually destabilized, with transitions occurring from both extension to flexion on the beat and from flexion to extension on the beat. These results reveal the complementary nature of strategic and neuromuscular factors in sensorimotor coordination. They also suggest the presence of a multimodal neural integration process-which is parametrizable by rate and context - in which intentional movement, touch and sound are bound into a single, coherent unit.
Resumo:
Two cases of school refusal are presented. From the experience of these two cases, and support from the literature, early assessment of parental control in cases of school refusal is advocated. When parental control, even with professional therapeutic support, is not sufficient to effect an early return to school, intervention in the wider systems organised around the problem is recommended.
Resumo:
We study the effects of amplitude and phase damping decoherence in d-dimensional one-way quantum computation. We focus our attention on low dimensions and elementary unidimensional cluster state resources. Our investigation shows how information transfer and entangling gate simulations are affected for d >= 2. To understand motivations for extending the one-way model to higher dimensions, we describe how basic qudit cluster states deteriorate under environmental noise of experimental interest. In order to protect quantum information from the environment, we consider encoding logical qubits into qudits and compare entangled pairs of linear qubit-cluster states to single qudit clusters of equal length and total dimension. A significant reduction in the performance of cluster state resources for d > 2 is found when Markovian-type decoherence models are present.
Resumo:
Contestants are predicted to adjust the cost of a fight in line with the perceived value of the resource and this provides a way of determining whether the resource has been assessed. An assessment of resource value is predicted to alter an animal's motivational state and we note different methods of measuring that state. We provide a categorical framework in which the degree of resource assessment may be evaluated and also note limitations of various approaches. We place studies in six categories: (1) cases of no assessment, (2) cases of internal state such as hunger influencing apparent value, (3) cases of the contestants differing in assessment ability, (4) cases of mutual and equal assessment of value, (5) cases where opponents differ in resource value and (6) cases of particularly complex assessment abilities that involve a comparison of the value of two resources. We examine the extent to which these studies support game theory predictions and suggest future areas of research. (C) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Intermedin (IMD) is a novel peptide related to calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). Proteolytic processing of a larger precursor yields a series of biologically active C-terminal fragments, IMD1–53, IMD1–47 and IMD8–47. IMD shares a family of receptors with AM and CGRP composed of a calcitonin-receptor like receptor (CALCRL) associated with one of three receptor activity modifying proteins (RAMP). Compared to CGRP, IMD is less potent at CGRP1 receptors but more potent at AM1 receptors and AM2 receptors; compared to AM, IMD is more potent at CGRP1 receptors but less potent at AM1 and AM2 receptors. The cellular and tissue distribution of IMD overlaps in some aspects with that of CGRP and AM but is distinct from both. IMD is present in neonatal but absent or expressed sparsely, in adult heart and vasculature and present at low levels in plasma. The prominent localization of IMD in hypothalamus and pituitary and in kidney is consistent with a physiological role in the central and peripheral regulation of the circulation and water-electrolyte homeostasis. IMD is a potent systemic and pulmonary vasodilator, influences regional blood flow and augments cardiac contractility. IMD protects myocardium from the deleterious effects of oxidative stress associated with ischaemia-reperfusion injury and exerts an anti-growth effect directly on cardiomyocytes to oppose the influence of hypertrophic stimuli. The robust increase in expression of the peptide in hypertrophied and ischaemic myocardium indicates an important protective role for IMD as an endogenous counter-regulatory peptide in the heart.
Resumo:
Cholecystokinin (CCK) is a peptide hormone secreted from the I-cells of the intestine and it has important physiological actions related to appetite regulation and satiety. In this study we used STC-1 cells to investigate the effects of common dietary-derived fatty acids (FAs) on I-cell secretory function and metabolism. We extend earlier studies by measuring the acute and chronic effects of 11 FAs on CCK secretion, cellular CCK content, CCK mRNA levels, cellular DNA synthesis, cellular viability and cytotoxicity. FAs were selected in order to assess the importance of chain length, degree of saturation, and double bond position and conformation. The results demonstrate that secretory responses elicited by dietary FAs are highly selective. For example, altering the conformation of a double bond from cis to trans (i.e. oleic acid versus elaidic acid) completely abolishes CCK secretion. Lauric acid appears to adversely affect I-cell metabolism and arachidonic acid suppresses DNA synthesis. Our studies reveal for the first time that conjugated linoleic acid isoforms are particularly potent CCK secretagogues, which also boost intracellular stores of CCK. These actions of conjugated linoleic acid may explain satiating actions observed in dietary intervention studies.