883 resultados para Information security evaluation
Resumo:
In this paper, we present the results of a survey conducted to measure the attitudes of the consumers of eHealth towards Accountable-eHealth systems which are designed for information privacy management. A research model is developed that can identify the factors contributing to system acceptance and is validated using quantitative data from 187 completed survey responses from university students studying non-health related courses at a university in Queensland, Australia. The research model is validated using structural equation modelling and can be used to identify how specific characteristics of Accountable-eHealth systems would affect their overall acceptance by future eHealth consumers.
Resumo:
This paper strives to identify barriers that hamper eHealth implementation from different perspectives. The benefits offered by eHealth and the need for eHealth preparedness is first discussed. This is followed by a discussion on the integral components of a robust eHealth infrastructure. Then, the barriers to eHealth such as technical interoperability issues, lack of holistic approach and technology disconnect are explained in detail. Finally, solutions to promote better adoption of eHealth through government policies, standardisation and training are also discussed.
Resumo:
Information and communications technologies are a significant component of the healthcare domain, and electronic health records play a major role in it. Therefore, it is important that they are accepted en masse by healthcare professionals. How healthcare professionals perceive the usefulness of electronic health records and their attitudes towards them have been shown to have significant effects on the overall acceptance in many healthcare systems around the world. This paper investigates the role of perceived usefulness and attitude on the intention to use electronic health records by future healthcare professionals using polynomial regression with response surface analysis. Results show that the relationships between these variables are more complex than predicted in prior research. The paper concludes that the properties of the above determinants must be further investigated to clearly understand: (i) their role in predicting the intention to use electronic health records; and (ii) in designing systems that are better adopted by healthcare professionals of the future.
Resumo:
New criteria of extended resiliency and extended immunity of vectorial Boolean functions, such as S-boxes for stream or block ciphers, were recently introduced. They are related to a divide-and-conquer approach to algebraic attacks by conditional or unconditional equations. Classical resiliency turns out to be a special case of extended resiliency and as such requires more conditions to be satisfied. In particular, the algebraic degrees of classically resilient S-boxes are restricted to lower values. In this paper, extended immunity and extended resiliency of S-boxes are studied and many characterisations and properties of such S-boxes are established. The new criteria are shown to be necessary and sufficient for resistance against the divide-and-conquer algebraic attacks by conditional or unconditional equations.
Resumo:
The work addresses the problem of cheating prevention in secret sharing. Two cheating scenarios are considered. In the first one, the cheaters always submit invalid shares to the combiner. In the second one, the cheaters collectively decide which shares are to be modified so the combiner gets a mixture of valid and invalid shares from the cheaters. The secret scheme is said to be k-cheating immune if any group of k cheaters has no advantage over honest participants. The paper investigates cryptographic properties of the defining function of secret sharing so the scheme is k-cheating immune. Constructions of secret sharing immune against k cheaters are given.
Resumo:
To provide card holder authentication while they are conducting an electronic transaction using mobile devices, VISA and MasterCard independently proposed two electronic payment protocols: Visa 3D Secure and MasterCard Secure Code. The protocols use pre-registered passwords to provide card holder authentication and Secure Socket Layer/ Transport Layer Security (SSL/TLS) for data confidentiality over wired networks and Wireless Transport Layer Security (WTLS) between a wireless device and a Wireless Application Protocol (WAP) gateway. The paper presents our analysis of security properties in the proposed protocols using formal method tools: Casper and FDR2. We also highlight issues concerning payment security in the proposed protocols.
Resumo:
language (such as C++ and Java). The model used allows to insert watermarks on three “orthogonal” levels. For the first level, watermarks are injected into objects. The second level watermarking is used to select proper variants of the source code. The third level uses transition function that can be used to generate copies with different functionalities. Generic watermarking schemes were presented and their security discussed.
Resumo:
Social Engineering (ES) is now considered the great security threat to people and organizations. Ever since the existence of human beings, fraudulent and deceptive people have used social engineering tricks and tactics to trick victims into obeying them. There are a number of social engineering techniques that are used in information technology to compromise security defences and attack people or organizations such as phishing, identity theft, spamming, impersonation, and spaying. Recently, researchers have suggested that social networking sites (SNSs) are the most common source and best breeding grounds for exploiting the vulnerabilities of people and launching a variety of social engineering based attacks. However, the literature shows a lack of information about what types of social engineering threats exist on SNSs. This study is part of a project that attempts to predict a persons’ vulnerability to SE based on demographic factors. In this paper, we demonstrate the different types of social engineering based attacks that exist on SNSs, the purposes of these attacks, reasons why people fell (or did not fall) for these attacks, based on users’ opinions. A qualitative questionnaire-based survey was conducted to collect and analyse people’s experiences with social engineering tricks, deceptions, or attacks on SNSs.
Resumo:
Social networking sites (SNSs), with their large number of users and large information base, seem to be the perfect breeding ground for exploiting the vulnerabilities of people, who are considered the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as “social engineering.” Fraudulent and deceptive people use social engineering traps and tactics through SNSs to trick users into obeying them, accepting threats, and falling victim to various crimes such as phishing, sexual abuse, financial abuse, identity theft, and physical crime. Although organizations, researchers, and practitioners recognize the serious risks of social engineering, there is a severe lack of understanding and control of such threats. This may be partly due to the complexity of human behaviors in approaching, accepting, and failing to recognize social engineering tricks. This research aims to investigate the impact of source characteristics on users’ susceptibility to social engineering victimization in SNSs, particularly Facebook. Using grounded theory method, we develop a model that explains what and how source characteristics influence Facebook users to judge the attacker as credible.
Resumo:
Digital signature is a breakthrough of modern cryptographic systems. A (t, n) threshold digital signature allows every set of cardinality t or more (out-of n) co-signers to authenticate a message. In almost all existing threshold digital signatures the threshold parameter t is fixed. There are applications, however, in which the threshold parameter needs to be changed from time to time. This paper considers such a scenario, in order to discuss relevant problems, and proposes a model that solves the related problems.
Resumo:
We present a distinguishing attack against SOBER-128 with linear masking. We found a linear approximation which has a bias of 2^− − 8.8 for the non-linear filter. The attack applies the observation made by Ekdahl and Johansson that there is a sequence of clocks for which the linear combination of some states vanishes. This linear dependency allows that the linear masking method can be applied. We also show that the bias of the distinguisher can be improved (or estimated more precisely) by considering quadratic terms of the approximation. The probability bias of the quadratic approximation used in the distinguisher is estimated to be equal to O(2^− − 51.8), so that we claim that SOBER-128 is distinguishable from truly random cipher by observing O(2^103.6) keystream words.
Resumo:
We observe that MDS codes have interesting properties that can be used to construct ideal threshold schemes. These schemes permit the combiner to detect cheating, identify cheaters and recover the correct secret. The construction is later generalised so the resulting secret sharing is resistant against the Tompa-Woll cheating.
Resumo:
NLS is a stream cipher which was submitted to the eSTREAM project. A linear distinguishing attack against NLS was presented by Cho and Pieprzyk, which was called Crossword Puzzle (CP) attack. NLSv2 is a tweak version of NLS which aims mainly at avoiding the CP attack. In this paper, a new distinguishing attack against NLSv2 is presented. The attack exploits high correlation amongst neighboring bits of the cipher. The paper first shows that the modular addition preserves pairwise correlations as demonstrated by existence of linear approximations with large biases. Next, it shows how to combine these results with the existence of high correlation between bits 29 and 30 of the S-box to obtain a distinguisher whose bias is around 2^−37. Consequently, we claim that NLSv2 is distinguishable from a random cipher after observing around 2^74 keystream words.
Resumo:
In this paper we make progress towards solving an open problem posed by Katz and Yung at CRYPTO 2003. We propose the first protocol for key exchange among n ≥2k+1 parties which simultaneously achieves all of the following properties: 1. Key Privacy (including forward security) against active attacks by group outsiders, 2. Non-malleability — meaning in particular that no subset of up to k corrupted group insiders can ‘fix’ the agreed key to a desired value, and 3. Robustness against denial of service attacks by up to k corrupted group insiders. Our insider security properties above are achieved assuming the availability of a reliable broadcast channel.
Resumo:
Algebraic immunity AI(f) defined for a boolean function f measures the resistance of the function against algebraic attacks. Currently known algorithms for computing the optimal annihilator of f and AI(f) are inefficient. This work consists of two parts. In the first part, we extend the concept of algebraic immunity. In particular, we argue that a function f may be replaced by another boolean function f^c called the algebraic complement of f. This motivates us to examine AI(f ^c ). We define the extended algebraic immunity of f as AI *(f)= min {AI(f), AI(f^c )}. We prove that 0≤AI(f)–AI *(f)≤1. Since AI(f)–AI *(f)= 1 holds for a large number of cases, the difference between AI(f) and AI *(f) cannot be ignored in algebraic attacks. In the second part, we link boolean functions to hypergraphs so that we can apply known results in hypergraph theory to boolean functions. This not only allows us to find annihilators in a fast and simple way but also provides a good estimation of the upper bound on AI *(f).