993 resultados para Inferior Temporal Cortex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether the somatosensory system, like its visual and auditory counterparts, is comprised of parallel functional pathways for processing identity and spatial attributes (so-called what and where pathways, respectively) has hitherto been studied in humans using neuropsychological and hemodynamic methods. Here, electrical neuroimaging of somatosensory evoked potentials (SEPs) identified the spatio-temporal mechanisms subserving vibrotactile processing during two types of blocks of trials. What blocks varied stimuli in their frequency (22.5 Hz vs. 110 Hz) independently of their location (left vs. right hand). Where blocks varied the same stimuli in their location independently of their frequency. In this way, there was a 2x2 within-subjects factorial design, counterbalancing the hand stimulated (left/right) and trial type (what/where). Responses to physically identical somatosensory stimuli differed within 200 ms post-stimulus onset, which is within the same timeframe we previously identified for audition (De Santis, L., Clarke, S., Murray, M.M., 2007. Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. Cereb Cortex 17, 9-17.). Initially (100-147 ms), responses to each hand were stronger to the what than where condition in a statistically indistinguishable network within the hemisphere contralateral to the stimulated hand, arguing against hemispheric specialization as the principal basis for somatosensory what and where pathways. Later (149-189 ms) responses differed topographically, indicative of the engagement of distinct configurations of brain networks. A common topography described responses to the where condition irrespective of the hand stimulated. By contrast, different topographies accounted for the what condition and also as a function of the hand stimulated. Parallel, functionally specialized pathways are observed across sensory systems and may be indicative of a computationally advantageous organization for processing spatial and identity information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory spatial functions, including the ability to discriminate between the positions of nearby sound sources, are subserved by a large temporo-parieto-frontal network. With the aim of determining whether and when the parietal contribution is critical for auditory spatial discrimination, we applied single pulse transcranial magnetic stimulation on the right parietal cortex 20, 80, 90 and 150 ms post-stimulus onset while participants completed a two-alternative forced choice auditory spatial discrimination task in the left or right hemispace. Our results reveal that transient TMS disruption of right parietal activity impairs spatial discrimination when applied at 20 ms post-stimulus onset for sounds presented in the left (controlateral) hemispace and at 80 ms for sounds presented in the right hemispace. We interpret our finding in terms of a critical role for controlateral temporo-parietal cortices over initial stages of the building-up of auditory spatial representation and for a right hemispheric specialization in integrating the whole auditory space over subsequent, higher-order processing stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé: L'objectif de l'étude est de caractériser la manifestation clinique d'une atteinte vasculaire cérébrale ischémique aiguë limitée au cortex insulaire, région intrigante et méconnue du cerveau humain. Dans la pratique clinique, une atteinte vasculaire aiguë limitée à l'insula, sans compromission d'autres régions cérébrales, est exceptionnelle et sa manifestation clinique neurologique est souvent non reconnue. L'étude est focalisée sur quatre patients, inscrits dans le Lausanne Stroke Registry, présentant une nouvelle atteinte vasculaire cérébrale avec une lésion unique purement limitée au cortex insulaire, objectivée à l'aide de la résonance magnétique (IRM). L'étude a mis en évidence cinq manifestations cliniques principales : 1) Troubles de la sensibilité corporelle sont révélé chez trois patients avec une atteinte insulaire postérieure (deux avec un syndrome pseudothalamique, un avec un déficit à distribution partielle). 2) Un patient avec une lésion insulaire postérieure gauche présent des troubles du goût. 3) Un syndrome pseudovestibulaire avec vertiges non rotatoires, instabilité à la marche sans nystagmus, est mis en évidence chez trois patients avec une atteinte ischémique insulaire postérieure. 4) Un patient avec atteinte de l'insula postérieure droite présente des épisodes d'hypertension artérielle d'origine cryptique. 5) Des troubles neuropsychologiques tels qu'aphasie et dysarthrie sont détectés chez les patients avec une atteinte insulaire postérieure gauche, un épisode de somatoparaphrénie est rapporté avec une atteinte insulaire postérieure droite. En conclusion, les atteintes vasculaires cérébrales ischémiques aiguës limitées au cortex insulaire postérieur peuvent se manifester principalement avec un tableau clinique caractérisé par un syndrome pseudothalamique associé à une symptomatologie pseudovertigineuse. Les lésions insulaires postérieures peuvent se manifester avec une dysarthrie et des troubles du goût, une aphasie (gauche), une somatoparaphrénie et une dysfonction hypertensive (droite). L'étude n'a pas mis en évidence de dysphagie, reportée dans les atteintes insulaires antérieures. Abstract: Objective: To characterize clinically acute insular strokes from four patients with, a first ever acute stroke restricted to the insula on MRI. Methods: The authors studied the clinical presentation of four patients with a first ever acute stroke restricted to the insula on MRI. Results: The authors found five main groups of clinical presentations: 1) somatosensory deficits in three patients with posterior insular stroke (two with a transient pseudothalamic sensory syndrome, one with partial distribution); 2) gustatory disorder in a patient with left posterior insular infarct; 3) vestibular-like syndrome, with dizziness, gait instability, and tendency to fall, but no nystagmus, in three patients with posterior insular strokes; 4) cardiovascular disturbances, consisting of hypertensive episodes in a patient with a right posterior insular infarct; and 5) neuropsychological disorders, including aphasia (left posterior insula), dysarthria, and transient somatoparaphrenia (right posterior insula). Conclusion: Strokes restricted to the posterior insula may present with pseudothalamic sensory and vestibular-like syndromes as prominent clinical manifestations, but also dysarthria and aphasia (in left lesions), somatoparaphrenia (right lesions) and gustatory dysfunction and blood pressure with hypertensive episodes in right lesions; we did not find acute dysphagia reported in anterior, insular strokes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudi de 3 punts amb diferent intensitat de trànsit a Sabadell: punt de trànsit, fons urbà i fons suburbà. Nivells de PM i altres gasos contaminants van ser mesurats durant 1 mes. Els objectius principals són la correlació dels nivells de partícules i NOx als 3 punts d’estudi (ja que als estudis epidemiològics s’utilitza NO2 com a indicador del nivell de partícules); la caracterització química de les partícules per determinar quina porció té origen en les emissions dels tubs d’escapament i identificar similituds i diferències entre els nivells i composició de partícules entre les diferents estacions seleccionades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new method, based on inertial sensors, to automatically measure at high frequency the durations of the main phases of ski jumping (i.e. take-off release, take-off, and early flight). The kinematics of the ski jumping movement were recorded by four inertial sensors, attached to the thigh and shank of junior athletes, for 40 jumps performed during indoor conditions and 36 jumps in field conditions. An algorithm was designed to detect temporal events from the recorded signals and to estimate the duration of each phase. These durations were evaluated against a reference camera-based motion capture system and by trainers conducting video observations. The precision for the take-off release and take-off durations (indoor < 39 ms, outdoor = 27 ms) can be considered technically valid for performance assessment. The errors for early flight duration (indoor = 22 ms, outdoor = 119 ms) were comparable to the trainers' variability and should be interpreted with caution. No significant changes in the error were noted between indoor and outdoor conditions, and individual jumping technique did not influence the error of take-off release and take-off. Therefore, the proposed system can provide valuable information for performance evaluation of ski jumpers during training sessions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amostras de rotavírus provenientes de crianças habitantes na periferia de Belém, Pará, foram analisadas por eletroforese em gel de policrilamida (PAGE). As bandas correspondentes aos 11 segmentos de ARN foram detectadas em 46 (76,7%) das 60 amostras de rotavírus. Das amostras classificadas 5 (109%) foram relativas ao subgrupo I, 41 (89,1%) ao subgrupo II e, em 23,3%) não foi possível classificação face a ausência das bandas 10 e 11. As amostras de rotavírus sub-grupo II e codificadas como "1N2L" foram as mais freqüentes, ocorrendo em 30 (65,2%) das 46 classificadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes support lower-level (perceptual) mechanisms. We used time-resolved sparse fMRI to test for top-down neural mechanisms, measuring activity while participants heard coherent and anomalous sentences presented in speech envelope/spectrum noise at varying signal-to-noise ratios (SNR). The timing of BOLD responses to more intelligible speech provides evidence of hierarchical organization, with earlier responses in peri-auditory regions of the posterior superior temporal gyrus than in more distant temporal and frontal regions. Despite Sentence content × SNR interactions in the superior temporal gyrus, prefrontal regions respond after auditory/perceptual regions. Although we cannot rule out top-down effects, this pattern is more compatible with a purely feedforward or bottom-up account, in which the results of lower-level perceptual processing are passed to inferior frontal regions. Behavioral and neural evidence that sentence content influences perception of degraded speech does not necessarily imply "top-down" neural processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A panel of novel monoclonal antibodies was tested on the human entorhinal cortex for the recognition of age- and disease-related changes of neurofilament proteins (NF). Several antibodies identified phosphorylated NF-H subunit, which occurred preferentially in those aged between 60 and 80 years and were localized in degenerating neurons. Such neurons also contained neurofibrillary tangles, but neurofilament aggregates did not co-localize with tangles, nor did the quantity nor the number of NF-positive neurons correlate with the severity of Alzheimer's disease. This points to a susceptibility of NF in a subset of neurons for phosphorylation- and metabolically related morphological changes during neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study introduces a novel approach for automatic temporal phase detection and inter-arm coordination estimation in front-crawl swimming using inertial measurement units (IMUs). We examined the validity of our method by comparison against a video-based system. Three waterproofed IMUs (composed of 3D accelerometer, 3D gyroscope) were placed on both forearms and the sacrum of the swimmer. We used two underwater video cameras in side and frontal views as our reference system. Two independent operators performed the video analysis. To test our methodology, seven well-trained swimmers performed three 300 m trials in a 50 m indoor pool. Each trial was in a different coordination mode quantified by the index of coordination. We detected different phases of the arm stroke by employing orientation estimation techniques and a new adaptive change detection algorithm on inertial signals. The difference of 0.2 +/- 3.9% between our estimation and video-based system in assessment of the index of coordination was comparable to experienced operators' difference (1.1 +/- 3.6%). The 95% limits of agreement of the difference between the two systems in estimation of the temporal phases were always less than 7.9% of the cycle duration. The inertial system offers an automatic easy-to-use system with timely feedback for the study of swimming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary auditory cortex (PAC) is central to human auditory abilities, yet its location in the brain remains unclear. We measured the two largest tonotopic subfields of PAC (hA1 and hR) using high-resolution functional MRI at 7 T relative to the underlying anatomy of Heschl's gyrus (HG) in 10 individual human subjects. The data reveals a clear anatomical-functional relationship that, for the first time, indicates the location of PAC across the range of common morphological variants of HG (single gyri, partial duplications, and complete duplications). In 20/20 individual hemispheres, two primary mirror-symmetric tonotopic maps were clearly observed with gradients perpendicular to HG. PAC spanned both divisions of HG in cases of partial and complete duplications (11/20 hemispheres), not only the anterior division as commonly assumed. Specifically, the central union of the two primary maps (the hA1-R border) was consistently centered on the full Heschl's structure: on the gyral crown of single HGs and within the sulcal divide of duplicated HGs. The anatomical-functional variants of PAC appear to be part of a continuum, rather than distinct subtypes. These findings significantly revise HG as a marker for human PAC and suggest that tonotopic maps may have shaped HG during human evolution. Tonotopic mappings were based on only 16 min of fMRI data acquisition, so these methods can be used as an initial mapping step in future experiments designed to probe the function of specific auditory fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of von Economo neurons (VENs) in the frontoinsular cortex (FI) has been linked to a possible role in the integration of bodily feelings, emotional regulation, and goal-directed behaviors. They have also been implicated in fast intuitive evaluation of complex social situations. Several studies reported a decreased number of VENs in neuropsychiatric diseases in which the "embodied" dimension of social cognition is markedly affected. Neuropathological analyses of VENs in patients with autism are few and did not report alterations in VEN numbers. In this study we re-evaluated the possible presence of changes in VEN numbers and their relationship with the diagnosis of autism. Using a stereologic approach we quantified VENs and pyramidal neurons in layer V of FI in postmortem brains of four young patients with autism and three comparably aged controls. We also investigated possible autism-related differences in FI layer V volume. Patients with autism consistently had a significantly higher ratio of VENs to pyramidal neurons (p=0.020) than control subjects. This result may reflect the presence of neuronal overgrowth in young patients with autism and may also be related to alterations in migration, cortical lamination, and apoptosis. Higher numbers of VENs in the FI of patients with autism may also underlie a heightened interoception, described in some clinical observations.