809 resultados para Indium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic is a human carcinogen that has been found in various waters and wines throughout the world. Therefore, close examination of these liquids is necessary to prevent the intoxication of animals and humans. Wines and waters often contain significant amounts of toxic arsenic species. The source of arsenic in wines and waters is generally believed to be the result of arsenic-based pesticides and herbicides. Recent studies have also shown that toxic arsenic may be used in the cultivation and acceleration of the ripening process of fruit, ultimately contaminating fruit-based beverages. The determination of total arsenic can be found by using several methods, including AFS or ICP/MS. No pretreatment of water is necessary, except for filtering by means of a Fisherbrand PTFE 0.45 connected to a Becton-Dickinson 10 mL syringe to filter particles from water. The pretreatment of the wine includes ethanol evaporation and an addition of 0.1% nitric acid. A number of commercial drinking waters and regional lake water were analyzed. Since we have confirmed the presence of arsenic in a variety of waters and wines from different countries, we decided to test a number of commercially available beverages for the presence of arsenic. The focus ofthis project is to establish the presence of arsenic in various commercially available beverages. ICP-MS was used to determine total arsenic using certified standards. Internal standards Indium and Yttrium were also used to verify the concentration readings, which varied from 0- 20 ppb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar energy presents itself as an excellent alternative for the generation of clean, renewable energy. This work aims to identify technological trends of photovoltaic cells for solar energy. The research is characterized, in relation to nature, to be applied; regarding the approach is qualitative and quantitative; with respect to the objectives, it is exploratory and descriptive; concerning the methodological procedure is considered a bibliographic research with a case study in the case of solar photovoltaic sector. The development of this research began with a literature review on photovoltaic solar energy and technology foresight. Then it led to the technology mapping of photovoltaic solar cells through the analysis of articles and patents. It was later performed the technological prospecting of photovoltaic cells for solar energy through the Delphi method, as well as the construction of the current plan and future technology of photovoltaic cells for the current scenario, 2020 and 2025. The results of this research show that the considered mature technologies (silicon mono and multicrystalline) will continue to be commercially viable within the prospected period (2020-2025). Other technologies that are currently viable (amorphous silicon, cadmium telluride and copper indium selenide / Copper indium gallium diselenide-), may not submit the same condition in 2025. Since the cells of silicon nanowires, dye-sensitized and based on carbon nanostructure, which nowadays are not commercially viable, may be part of the future map of photovoltaic technologies for solar energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of electrical resistivity, magnetic susceptibility, specific heat and x-ray absorption spectroscopy measurements in Tb1−xYxRhIn5 (x = 0.00, 0.15, 0.4.0, 0.50 e 0.70) single crystals. Tb1−xYxRhIn5 is an antiferromagnetic AFM compound with ordering temperature TN ≈ 46 K, the higher TN within the RRhIn5 serie (R : rare earth). We evaluate the physical properties evolution and the supression of the AFM state considering doping and Crystalline Electric Field (CEF) effects on magnetic exchange interaction between Tb3+ magnetic ions. CEF acts like a perturbation potential, breaking the (2J + 1) multiplet s degeneracy. Also, we studied linear-polarization-dependent soft x-ray absorption at Tb M4 and M5 edges to validate X-ray Absorption Spectroscopy as a complementary technique in determining the rare earth CEF ground state. Samples were grown by the indium excess flux and the experimental data (magnetic susceptibility and specific heat) were adjusted with a mean field model that takes account magnetic exchange interaction between first neighbors and CEF effects. XAS experiments were carried on Total Electron Yield mode at Laborat´onio Nacional de Luz S´ıncrotron, Campinas. We measured X-ray absorption at Tb M4,5 edges with incident polarized X-ray beam parallel and perpendicular to c-axis (E || c e E ⊥ c). The mean field model simulates the mean behavior of the whole system and, due to many independent parameters, gives a non unique CEF scheme. XAS is site- and elemental- specific technique and gained the scientific community s attention as complementary technique in determining CEF ground state in rare earth based compounds. In this work we wil discuss the non conclusive results of XAS technique in TbRhIn5 compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anodic behavior of highly doped (> 1018 cm-3) n-InP in aqueous KOH was investigated. Electrodes anodized in the absence of light in 2- 5 mol dm-3 KOH at a constant potential of 0.5- 0.75 V (SCE), or subjected to linear potential sweeps to potentials in this range, were shown to exhibit the formation of a nanoporous subsurface region. Both linear sweep voltammograms and current-time curves at constant potential showed a characteristic anodic peak, corresponding to formation of the nanoporous region. No porous region was formed during anodization in 1 mol dm-3 KOH. The nanoporous region was examined using transmission electron microscopy and found to have a thickness of some 1- 3 μm depending on the anodization conditions and to be located beneath a thin (typically ∼40 nm), dense, near-surface layer. The pores varied in width from 25 to 75 nm and both the pore width and porous region thickness were found to decrease with increasing KOH concentration. The porosity was approximately 35%. The porous layer structure is shown to form by the localized penetration of surface pits into the InP, and the dense, near-surface layer is consistent with the effect of electron depletion at the surface of the semiconductor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The observation of spontaneous oscillations in current during the anodization of InP in relatively high concentrations of KOH electrolytes is reported. Oscillations were observed under potential sweep and constant potential conditions. Well-defined oscillations are observed during linear potential sweeps of InP in 5 mol dm-3 KOH to potentials above ∼1.7 V (SCE) at scan rates in the range of 50 to 500 mV s-1. The oscillations observed exhibit an asymmetrical current versus potential profile, and the charge per cycle was found to increase linearly with potential. More complex oscillatory behavior was observed under constant potential conditions. Periodic damped oscillations are observed in high concentrations of electrolyte whereas undamped sinusoidal oscillations are observed in relatively lower concentrations. In both cases, the anodization of InP results in porous InP formation, and the current in the oscillatory region corresponds to the cyclical effective area changes due to pitting dissolution of the InP surface with the coincidental growth of a thick porous In2O3 film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As silicon based devices in integrated circuits reach the fundamental limits of dimensional scaling there is growing research interest in the use of high electron mobility channel materials, such as indium gallium arsenide (InGaAs), in conjunction with high dielectric constant (high-k) gate oxides, for Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) based devices. The motivation for employing high mobility channel materials is to reduce power dissipation in integrated circuits while also providing improved performance. One of the primary challenges to date in the field of III-V semiconductors has been the observation of high levels of defect densities at the high-k/III-V interface, which prevents surface inversion of the semiconductor. The work presented in this PhD thesis details the characterization of MOS devices incorporating high-k dielectrics on III-V semiconductors. The analysis examines the effect of modifying the semiconductor bandgap in MOS structures incorporating InxGa1-xAs (x: 0, 0.15. 0.3, 0.53) layers, the optimization of device passivation procedures designed to reduce interface defect densities, and analysis of such electrically active interface defect states for the high-k/InGaAs system. Devices are characterized primarily through capacitance-voltage (CV) and conductance-voltage (GV) measurements of MOS structures both as a function of frequency and temperature. In particular, the density of electrically active interface states was reduced to the level which allowed the observation of true surface inversion behavior in the In0.53Ga0.47As MOS system. This was achieved by developing an optimized (NH4)2S passivation, minimized air exposure, and atomic layer deposition of an Al2O3 gate oxide. An extraction of activation energies allows discrimination of the mechanisms responsible for the inversion response. Finally a new approach is described to determine the minority carrier generation lifetime and the oxide capacitance in MOS structures. The method is demonstrated for an In0.53Ga0.47As system, but is generally applicable to any MOS structure exhibiting a minority carrier response in inversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of III-nitride materials (InN, GaN and AlN) gained huge research momentum after breakthroughs in the production light emitting diodes (LEDs) and laser diodes (LDs) over the past two decades. Last year, the Nobel Prize in Physics was awarded jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for inventing a new energy efficient and environmental friendly light source: blue light-emitting diode (LED) from III-nitride semiconductors in the early 1990s. Nowadays, III-nitride materials not only play an increasingly important role in the lighting technology, but also become prospective candidates in other areas, for example, the high frequency (RF) high electron mobility transistor (HEMT) and photovoltaics. These devices require the growth of high quality III-nitride films, which can be prepared using metal organic vapour phase epitaxy (MOVPE). The main aim of my thesis is to study and develop the growth of III-nitride films, including AlN, u-AlGaN, Si-doped AlGaN, and InAlN, serving as sample wafers for fabrication of ultraviolet (UV) LEDs, in order to replace the conventional bulky, expensive and environmentally harmful mercury lamp as new UV light sources. For application to UV LEDs, reducing the threading dislocation density (TDD) in AlN epilayers on sapphire substrates is a key parameter for achieving high-efficiency AlGaNbased UV emitters. In Chapter 4, after careful and systematic optimisation, a working set of conditions, the screw and edge type dislocation density in the AlN were reduced to around 2.2×108 cm-2 and 1.3×109 cm-2 , respectively, using an optimized three-step process, as estimated by TEM. An atomically smooth surface with an RMS roughness of around 0.3 nm achieved over 5×5 µm 2 AFM scale. Furthermore, the motion of the steps in a one dimension model has been proposed to describe surface morphology evolution, especially the step bunching feature found under non-optimal conditions. In Chapter 5, control of alloy composition and the maintenance of compositional uniformity across a growing epilayer surface were demonstrated for the development of u-AlGaN epilayers. Optimized conditions (i.e. a high growth temperature of 1245 °C) produced uniform and smooth film with a low RMS roughness of around 2 nm achieved in 20×20 µm 2 AFM scan. The dopant that is most commonly used to obtain n-type conductivity in AlxGa1-xN is Si. However, the incorporation of Si has been found to increase the strain relaxation and promote unintentional incorporation of other impurities (O and C) during Si-doped AlGaN growth. In Chapter 6, reducing edge-type TDs is observed to be an effective appoach to improve the electric and optical properties of Si-doped AlGaN epilayers. In addition, the maximum electron concentration of 1.3×1019 cm-3 and 6.4×1018 cm-3 were achieved in Si-doped Al0.48Ga0.52N and Al0.6Ga0.4N epilayers as measured using Hall effect. Finally, in Chapter 7, studies on the growth of InAlN/AlGaN multiple quantum well (MQW) structures were performed, and exposing InAlN QW to a higher temperature during the ramp to the growth temperature of AlGaN barrier (around 1100 °C) will suffer a significant indium (In) desorption. To overcome this issue, quasi-two-tempeature (Q2T) technique was applied to protect InAlN QW. After optimization, an intense UV emission from MQWs has been observed in the UV spectral range from 320 to 350 nm measured by room temperature photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tunable tensile-strained germanium (epsilon-Ge) thin films on GaAs and heterogeneously integrated on silicon (Si) have been demonstrated using graded III-V buffer architectures grown by molecular beam epitaxy (MBE). epsilon-Ge epilayers with tunable strain from 0% to 1.95% on GaAs and 0% to 1.11% on Si were realized utilizing MBE. The detailed structural, morphological, band alignment and optical properties of these highly tensile-strained Ge materials were characterized to establish a pathway for wavelength-tunable laser emission from 1.55 μm to 2.1 μm. High-resolution X-ray analysis confirmed pseudomorphic epsilon-Ge epitaxy in which the amount of strain varied linearly as a function of indium alloy composition in the InxGa1-xAs buffer. Cross-sectional transmission electron microscopic analysis demonstrated a sharp heterointerface between the epsilon-Ge and the InxGa1-xAs layer and confirmed the strain state of the epsilon-Ge epilayer. Lowtemperature micro-photoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 eV and 0.65 eV demonstrated for the 0.82% and 1.11% epsilon-Ge on Si, respectively. The highly epsilon-Ge exhibited a direct bandgap, and wavelength-tunable emission was observed for all samples on both GaAs and Si. Successful heterogeneous integration of tunable epsilon-Ge quantum wells on Si paves the way for the implementation of monolithic heterogeneous devices on Si.