973 resultados para Ice -- Manufacture
Resumo:
Gas is trapped in polar ice sheets at ~50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage) in the past. However, such models need to be validated by data, in particular for periods colder than present day on the East Antarctic plateau. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane variations). We also use the structured 10Be peak, occurring 41 kyr before present (BP) and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage during this event. Our results seem to reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Although the exact reasons for the Δage overestimate at the two EPICA sites remain unknown at this stage, we conclude that current densification model simulations have deficits under glacial climatic conditions. Whatever the cause of the Δage overestimate, our finding suggests that the phase relationship between CO2 and EDC temperature previously inferred for the start of the last deglaciation (lag of CO2 by 800±600 yr) seems to be overestimated.
Resumo:
A new, decadally resolved record of the 10Be peak at 41 kyr from the EPICA Dome C ice core (Antarctica) is used to match it with the same peak in the GRIP ice core (Greenland). This permits a direct synchronisation of the climatic variations around this time period, independent of uncertainties related to the ice age-gas age difference in ice cores. Dansgaard-Oeschger event 10 is in the period of best synchronisation and is found to be coeval with an Antarctic temperature maximum. Simulations using a thermal bipolar seesaw model agree reasonably well with the observed relative climate chronology in these two cores. They also reproduce three Antarctic warming events observed between A1 and A2.
Resumo:
A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.
Resumo:
A common time scale for the EPICA ice cores from Dome C (EDC) and Dronning Maud Land (EDML) has been established. Since the EDML core was not drilled on a dome, the development of the EDML1 time scale for the EPICA ice core drilled in Dronning Maud Land was based on the creation of a detailed stratigraphic link between EDML and EDC, which was dated by a simpler 1D ice-flow model. The synchronisation between the two EPICA ice cores was done through the identification of several common volcanic signatures. This paper describes the rigorous method, using the signature of volcanic sulfate, which was employed for the last 52 kyr of the record. We estimated the discrepancies between the modelled EDC and EDML glaciological age scales during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. On average R ranges between 0.8 and 1.2 corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two ice cores. Significant deviations of R up to 1.4–1.5 are observed between 18 and 28 kyr before present (BP), where present is defined as 1950. At this stage our approach does not allow us unequivocally to find out which of the models is affected by errors, but assuming that the thinning function at both sites and accumulation history at Dome C (which was drilled on a dome) are correct, this anomaly can be ascribed to a complex spatial accumulation variability (which may be different in the past compared to the present day) upstream of the EDML core.