942 resultados para Iberian rivers
Resumo:
The Hooghly River estuary provides a unique experimental site to understand the effect of monsoonal river discharge on freshwater and seawater mixing. Water samples collected bi-weekly for a duration of 17 months were analyzed for salinity, delta O-18,delta C-13(DIC), as well as delta D to investigate the differential mixing of freshwater and seawater. The differences in salinity and delta O-18 of samples collected during low and high tides on the same day are strongly correlated suggesting a well mixed water column at our sampling site. Low salinity and depleted delta O-18 during monsoon is consistent with increased river discharge as well as high rainfall. We identified different slopes in a delta O-18 versus salinity plot for the estuary water samples collected during monsoon and non-monsoon seasons. This is driven by composition of the freshwater source which is dominated by rainwater during monsoon and rivers during non-monsoon months. Selected delta D analyses of samples indicate that groundwater contributes significantly to the Hooghly Estuary during low rainfall times of the year. delta C-13(DIC) measured in the water recorded low values towards the end of monsoon indicating low productivity (i.e. increased organic respiration) while progressively increasing delta C-13(DIC) values from October till January as well as during some of the pre-monsoon months can be explained by increasing productivity. Very low delta C-13(DIC) (similar to-20%0) suggests involvement of carbon derived from anaerobic oxidation of organics and/or methane with potential contribution from increased anthropogenic water supply. An estimate of seawater incursion into the Hooghly Estuary at different times of the year is obtained by using salinity data in a two-component mixing model. Presence of seawater was found maximum (31-37%) during February till July and lowest (less than or equal to 6%) from September till November. We notice a temporal offset between Ganges River discharge farther upstream at Farakka and salinity variation at the Hooghly Estuary. We believe that this time lag is a result of the physical distance between Farakka and Kakdweep (our sampling location) and put constraints on the travel time of river water during early monsoon. (c) 2012 Published by Elsevier B.V.
Resumo:
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the TungaBhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC-HMS 3.4) is used for the hydrological modelling of the study area. Linear-regression-based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub-basins of the study area. The large-scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 20112040, 20412070, and 20712099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub-basins in the study area.
Resumo:
Water is the most important medium through which climate change influences human life. Rising temperatures together with regional changes in precipitation patterns are some of the impacts of climate change that have implications on water availability, frequency and intensity of floods and droughts, soil moisture, water quality, water supply and water demands for irrigation and hydropower generation. In this article we provide an introduction to the emerging field of hydrologic impacts of climate change with a focus on water availability, water quality and irrigation demands. Climate change estimates on regional or local spatial scales are burdened with a considerable amount of uncertainty, stemming from various sources such as climate models, downscaling and hydrological models used in the impact assessments and uncertainty in the downscaling relationships. The present article summarizes the recent advances on uncertainty modeling and regional impacts of climate change for the Mahanadi and Tunga-Bhadra Rivers in India.
Resumo:
In the Himalaya, large areas are covered by glaciers and seasonal snow. They are an important source of water for the Himalayan rivers. In this article, observed changes in glacial extent and mass balance have been discussed. Various studies suggest that most of the Himalayan glaciers are retreating though the rate of retreat varies from glacier to glacier, ranging from a few meters to almost 61 m/year, depending upon the terrain and meteorological parameters. In addition, mapping of almost 11,000 out of 40,000 sq. km of glaciated area, distributed in all major climatic zones of the Himalaya, suggests an almost 13% loss in area in the last 4-5 decades. The glacier mass balance observations and estimates made using methods like field, AAR, ELA and geodetic measurements, suggest a significant increase in mass wastage of Himalayan glaciers in the last 3-4 decades. In the last four decades loss in glacial ice has been estimated at 19 +/- 7 m. This suggests loss of 443 +/- 136 Gt of glacial mass out of a total 3600-4400 Gt of glacial stored water in the Indian Himalaya. This study has also shown that mean loss in glacier mass in the Indian Himalaya is accelerated from -9 +/- 4 to -20 +/- 4 Gt/year between the periods 1975-85 and 2000-2010. The estimate of glacial stored water in the Indian Himalaya is based on glacier inventory on a 1 : 250,000 scale and scaling methods; therefore, we assume uncertainties to be large.
Resumo:
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
Resumo:
Detailed pedofacies characterization along-with lithofacies investigations of the Mio-Pleistocene Siwalik sediments exposed in the Ramnagar sub-basin have been studied so as to elucidate variability in time and space of fluvial processes and the role of intra- and extra-basinal controls on fluvial sedimentation during the evolution of the Himalayan foreland basin (HFB). Dominance of multiple, moderately to strongly developed palaeosol assemblages during deposition of Lower Siwalik (similar to 12-10.8 Ma) sediments suggest that the HFB was marked by Upland set-up of Thomas et al. (2002). Activity of intra-basinal faults on the uplands and deposition of terminal fans at different times caused the development of multiple soils. Further, detailed pedofacies along-with lithofacies studies indicate prevalence of stable tectonic conditions and development of meandering streams with broad floodplains. However, the Middle Siwalik (similar to 10.8-4.92 Ma) sub-group is marked by multistoried sandstones and minor mudstone and mainly weakly developed palaeosols, indicating deposition by large braided rivers in the form of megafans in a Lowland set-up of Thomas et al. (2002). Significant change in nature and size of rivers from the Lower to Middle Siwalik at similar to 10 Ma is found almost throughout of the basin from Kohat Plateau (Pakistan) to Nepal because the Himalayan orogeny witnessed its greatest tectonic upheaval at this time leading to attainment of great heights by the Himalaya, intensification of the monsoon, development of large rivers systems and a high rate of sedimentation, hereby a major change from the Upland set-up to the Lowland set-up over major parts of the HFB. An interesting geomorphic environmental set-up prevailed in the Ramnagar sub-basin during deposition of the studied Upper Siwalik (similar to 4.92 to <1.68 Ma) sediments as observed from the degree of pedogenesis and the type of palaeosols. In general, the Upper Siwalik sub-group in the Ramnagar sub-basin is subdivided from bottom to top into the Purmandal sandstone (4.92-4.49 Ma), Nagrota (4.49-1.68 Ma) and Boulder Conglomerate (<1.68 Ma) formations on the basis of sedimentological characters and change in dominant lithology. Presence of mudstone, a few thin gravel beds and dominant sandstone lithology with weakly to moderately developed palaeosols in the Purmandal sandstone Fm. indicates deposition by shallow braided fluvial streams. The deposition of mudstone dominant Nagrota Fm. with moderately to some well developed palaeosols and a zone of gleyed palaeosols with laminated mudstones and thin sandstones took place in an environment marked by numerous small lakes, water-logged regions and small streams in an environment just south of the Piedmont zone, perhaps similar to what is happening presently in the Upland region/the Upper Gangetic plain. This area is locally called the `Trai region' (Pascoe, 1964). Deposition of Boulder Conglomerate Fm. took place by gravelly braided river system close to the Himalayan Ranges. Activity along the Main Boundary Fault led to progradation of these environments distal-ward and led to development of on the whole a coarsening upward sequence. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The estimation of water and solute transit times in catchments is crucial for predicting the response of hydrosystems to external forcings (climatic or anthropogenic). The hydrogeochemical signatures of tracers (either natural or anthropogenic) in streams have been widely used to estimate transit times in catchments as they integrate the various processes at stake. However, most of these tracers are well suited for catchments with mean transit times lower than about 4-5 years. Since the second half of the 20th century, the intensification of agriculture led to a general increase of the nitrogen load in rivers. As nitrate is mainly transported by groundwater in agricultural catchments, this signal can be used to estimate transit times greater than several years, even if nitrate is not a conservative tracer. Conceptual hydrological models can be used to estimate catchment transit times provided their consistency is demonstrated, based on their ability to simulate the stream chemical signatures at various time scales and catchment internal processes such as N storage in groundwater. The objective of this study was to assess if a conceptual lumped model was able to simulate the observed patterns of nitrogen concentration, at various time scales, from seasonal to pluriannual and thus if it was relevant to estimate the nitrogen transit times in headwater catchments. A conceptual lumped model, representing shallow groundwater flow as two parallel linear stores with double porosity, and riparian processes by a constant nitrogen removal function, was applied on two paired agricultural catchments which belong to the Research Observatory ORE AgrHys. The Global Likelihood Uncertainty Estimation (GLUE) approach was used to estimate parameter values and uncertainties. The model performance was assessed on (i) its ability to simulate the contrasted patterns of stream flow and stream nitrate concentrations at seasonal and inter-annual time scales, (ii) its ability to simulate the patterns observed in groundwater at the same temporal scales, and (iii) the consistency of long-term simulations using the calibrated model and the general pattern of the nitrate concentration increase in the region since the beginning of the intensification of agriculture in the 1960s. The simulated nitrate transit times were found more sensitive to climate variability than to parameter uncertainty, and average values were found to be consistent with results from others studies in the same region involving modeling and groundwater dating. This study shows that a simple model can be used to simulate the main dynamics of nitrogen in an intensively polluted catchment and then be used to estimate the transit times of these pollutants in the system which is crucial to guide mitigation plans design and assessment. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Rivers of the world discharge about 36000 km 3 of freshwater into the ocean every year. To investigate the impact of river discharge on climate, we have carried out two 100 year simulations using the Community Climate System Model (CCSM3), one including the river runoff into the ocean and the other excluding it. When the river discharge is shut off, global average sea surface temperature (SST) rises by about 0.5 degrees C and the Indian Summer Monsoon Rainfall (ISMR) increases by about 10% of the seasonal total with large increase in the eastern Bay of Bengal and along the west coast of India. In addition, the frequency of occurrence of La Nina-like cooling events in the equatorial Pacific increases and the correlation between ISMR and Pacific SST anomalies become stronger. The teleconnection between the SST anomalies in the Pacific and monsoon is effected via upper tropospheric meridional temperature gradient and the North African-Asian Jet axis.
Resumo:
Sea level rise (SLR) is a primary factor responsible for inundation of low-lying coastal regions across the world, which in turn governs the agricultural productivity. In this study, rice (Oryza sativa L.) cultivated seasonally in the Kuttanad Wetland, a SLR prone region on the southwest coast of India, were analysed for oxygen, hydrogen and carbon isotopic ratios (delta O-18, delta H-2 and delta C-13) to distinguish the seasonal environmental conditions prevalent during rice cultivation. The region receives high rainfall during the wet season which promotes large supply of fresh water to the local water bodies via the rivers. In contrast, during the dry season reduced river discharge favours sea water incursion which adversely affects the rice cultivation. The water for rice cultivation is derived from regional water bodies that are characterised by seasonal salinity variation which co-varies with the delta O-18 and delta H-2 values. Rice cultivated during the wet and the dry season bears the isotopic imprints of this water. We explored the utility of a mechanistic model to quantify the contribution of two prominent factors, namely relative humidity and source water composition in governing the seasonal variation in oxygen isotopic composition of rice grain OM. delta C-13 values of rice grain OM were used to deduce the stress level by estimating the intrinsic water use efficiency (WUEi) of the crop during the two seasons. 1.3 times higher WUE, was exhibited by the same genotype during the dry season. The approach can be extended to other low lying coastal agro-ecosystems to infer the growth conditions of cultivated crops and can further be utilised for retrieving paleo-environmental information from well preserved archaeological plant remains. (c) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Resumen: La historia de los mozárabes de la Península Ibérica ha sido abordada desde múltiples perspectivas. Sin embargo, la situación de las mujeres de este colectivo no ha sido objeto de mayores estudios. El propósito del presente trabajo será realizar un primer acercamiento a la situación de las mujeres mozárabes, sus características y sus posibilidades de actuación tanto bajo las leyes islámicas, como bajo las normas cristianas. El análisis de esta cuestión se realizará teniendo en cuenta la naturaleza plástica de la identidad mozárabe, como así también el conjunto de normas internas y externas al grupo que modelaron sus posibilidades de acción.
Resumo:
Integran este número de la revista ponencias presentadas en Studia Hispanica Medievalia VIII: Actas de las IX Jornadas Internacionales de Literatura Española Medieval, 2008, y de Homenaje al Quinto Centenario de Amadis de Gaula
Resumo:
Resumen: La democracia en América de Alexis de Tocqueville contiene una teoría de las causas de la república democrática anglosajona en el norte del continente que se entremezcla con la explicación de los factores de la prosperidad norteamericana. A lo largo del libro el autor francés formula una serie de observaciones dispersas sobre los países del Nuevo Mundo colonizados por España y Portugal. El artículo analiza sistemáticamente estas observaciones, de manera de reconstruir la teoría comparativa del desarrollo económico de ambas regiones culturales, en parte esbozada y en parte implícita en este libro de Tocqueville. La revisión del peso relativo de a) las leyes, b) las costumbres y c) lo que Tocqueville llama circunstancias o causas accidentales en el desarrollo de la república democrática y su prosperidad, descubre inconsistencias de interés para quienes desean comprender las causas del atraso material de Iberoamérica respecto de Angloamérica.
Resumo:
Quequisque fue hasta 2004 la raíz y tubérculo más exportada en Nicaragua. Recientemente el área de siembra y los rendimientos decrecieron debido a enfermedades diseminadas por la semilla. El uso masivo y directo de vitroplantas se justifica cuando éstas son destinadas a la producción de semilla. Los cultivares Nueva Guinea ( Xanthosoma violaceum ) (NG) y Blanco (X. sagittifolium ) (Bco) fueron saneados (cultivo de meristemos y diagnóstico con prueba ELISA) y multiplicados in vitro , evaluado su comportamiento agronómico y potencial de propagación mediante la técnica de reproducción acelerada de semilla (TRAS) en Quilalí zona no tradicional. El medio de cultivo MS sin reguladores de crecimiento regeneró 75 % de plantas a partir de meristemos en NG y 100 % en Bco. ELISA diagnosticó 100 % de las plantas libres de DsMV. En el campo Bco registró los mayores promedios en altura de planta, área foliar y diámetro del pseudotallo. 89 dds 9-12 % de las plantas presentaron síntomas del DsMV; más de 50 % estaban infectadas según ELISA. 168 dds 100 % de las plantas estaban infectadas. Plantas de especies Xanthosoma silvestres infectadas fueron la fuente de inóculo del virus. No hubo diferencias estadísticas en número y peso de cormelos/hectárea (NG 6,270 y Bco 5,100 kg ha -1 ). Bco fue significativamente superior en número y peso de hijos. No hubo diferencias en peso, diámetro y longitud de cormos. En la propagación por TRAS Bco obtuvo 47.6 yemas totales/planta (sumatoria de yemas por cormos, cormelos e hijos) y NG 31.4. 100 % de las yemas de ambos cultivares brotaron una vez establecidas en vivero. El número total de plantas en el campo (2,200 de NG y 2,000 de Bco) tenían el potencial de producir vía TRAS 164,280 plantas de buena calidad (9.7 hectáreas) en menos de 3 meses.
Resumo:
La multiplicación convencional del plátano ( Musa spp.) a través de los hijuelos del cormo, además de la baja tasa de propagación, facilita la diseminación de plagas y enfermedades. La técnica de reproducción acelerada de semillas (TRAS), una alternativa en la producción sana de semilla, fue utilizada para la multiplicación de los cultivares Plátano Enano (PE) y CENSA ¾ (C ¾) en dos viveros comerciales de Rivas y Nandaime donde se establecieron 19 canteros en cada uno. En Rivas se multiplicaron 3 933 cormos de PE y 2 307 de C ¾ a 2.5 cm entre cormos en sustratos de arena de construcción (AC) y arena de playa (AP), riego por microasperción y fertilizacion con completo (15-15-15) NPK. En Nandaime se propagaron 6 952 cormos de PE a 1.5 cm entre cormos en AC. Se regó con regadoras y mangueras y se fertilizó con Súper fértil y Súper calcio. En Rivas las plantas separadas de los cormos se sembraron en bolsas de polietileno, en mezcla de cascarilla de arroz-arena-tierra y en Nandaime en 100% tierra. Se calculó el índice de brotación (IB) de los cormos. En Rivas el IB de PE fue 4 e igualmente para C ¾. El IB de PE en Nandaime fue 3. El mejor IB de PE en Rivas resulta de la utilización inmediata de cormos frescos y yemas en mejor estado físico. El IB de PE en AC fue 5 y 3 en AP, la diferencia la explica el mayor contenido de cenizas volcánicas, minerales y capacidad de absorción de agua de AC. Se produjeron 17 039 plantas de PE y 9 052 de C ¾ en Rivas y 21 637 plantas de PE en Nandaime. Los IB obtenidos son inferiores a los de la guía técnica-UNA. No se siguieron las indicaciones de selección de semilla en el campo, distancia de siembra y momento de corte.