990 resultados para IRF6 TRANSCRIPTION LEVELS
Resumo:
The provenance, half-life and biological activity of malondialdehyde (MDA) were investigated in Arabidopsis thaliana. We provide genetic confirmation of the hypothesis that MDA originates from fatty acids containing more than two methylene-linked double bonds, showing that tri-unsaturated fatty acids are the in vivo source of up to 75% of MDA. The abundance of the combined pool of free and reversibly bound MDA did not change dramatically in stress, although a significant increase in the free MDA pool under oxidative conditions was observed. The half-life of infiltrated MDA indicated rapid metabolic turnover/sequestration. Exposure of plants to low levels of MDA using a recently developed protocol powerfully upregulated many genes on a cDNA microarray with a bias towards those implicated in abiotic/environmental stress (e.g. ROF1 and XERO2). Remarkably, and in contrast to the activities of other reactive electrophile species (i.e. small vinyl ketones), none of the pathogenesis-related (PR) genes tested responded to MDA. The use of structural mimics of MDA isomers suggested that the propensity of the molecule to act as a cross-linking/modifying reagent might contribute to the activation of gene expression. Changes in the concentration/localisation of unbound MDA in vivo could strongly affect stress-related transcription.
Resumo:
ABSTRACT : The retina is one of the most important human sensory tissues since it detects and transmits all visual information from the outside world to the brain. Retinitis pigmentosa (RP) is the name given to a group of inherited diseases that affect specifically the photoreceptors present in the retina and in many instances lead to blindness. Dominant mutations in PRPF31, a gene that encodes for a pre-mRNA splicing factor, cause retinitis pigmentosa with reduced penetrance. We functionally investigated a novel mutation, identified in a large family with autosomal dominant RP, and 7 other mutations, substitutions and microdeletions, in 12 patients from 7 families with PRPF31-linked RP. Seven mutations lead to PRPF31 mRNA with premature stop codons and one to mRNA lacking the exon containing the initiation codon. Quantification of PRPF31 mRNA and protein levels revealed a significant reduction in cell lines derived from patients, compared to non carriers of mutations in PRPF31. Allelic quantification of PRPF31 mRNA indicated that the level of mutated mRNA is very low compared to wild-type mRNA. No mutant protein was detected and the subnuclear localization of wild-type PRPF31 remains the same in cell lines from patients and controls. Blocking nonsense-mediated mRNA decay in cell lines derived from patients partially restored PRPF31 mutated mRNA but derived proteins were still undetectable, even when protein degradation pathways were inhibited. Our results demonstrated that the vast majority of PRPF31 mutations result in null alleles, since they are subject to surveillance mechanisms that degrade mutated mRNA and possibly block its translation. Altogether, these data indicate that the likely cause of PRPF31-linked RP is haploinsufficiency, rather than a dominant negative effect. Penetrance of PRPF31 mutations has been previously demonstrated to be inversely correlated with the level of PRPF31 mRNA, since high expression of wild-type PRPF31 mRNA protects from the disease. Consequently, we have investigated the genetic modifiers that control the expression of PRPF31 by quantifying PRPF31 mRNA levels in cell lines derived from 200 individuals from 15 families representative of the general population. By linkage analyses we identified a 8.2Mb-region on chromosome 14q21-23 that contains a gene involved in the modulation of PRPF31 expression. We also assessed apreviously-mapped penetrance factor invariably located on the wild-type allele and linked to the PRPF31 locus in asymptomatic patients from different families with RP. We demonstrated that this modifier increases the expression of both PRPF31 alleles already at the pre-mRNA level. Finally, our data suggest that PRPF31 mRNA expression and consequently the penetrance of PRPF31 mutations is modulated by at least 2 diffusible compounds, which act on both PRPF31 alleles during their transcription.
Resumo:
In general practice, vitamin B12 levels are measured when searching an origin for an anemic status (usually megaloblastic anemia), for various neurological disorders (usually polyneuropathy) or for neurocognitive disorders. Although the pathologies associated with vitamin B12 deficiency are well known, hypervitaminemic B12 status is often fortuitous and frequent finding. The aim of this article is to present the disease entities associated with hypervitaminemia B12, the clinical implications of this dysvitaminosis and a practical approach when this laboratory abnormality is found.
Resumo:
Astrocytes are the brain nonnerve cells that are competent for gliosecretion, i.e., for expression and regulated exocytosis of clear and dense-core vesicles (DCVs). We investigated whether expression of astrocyte DCVs is governed by RE-1-silencing transcription factor (REST)/neuron-restrictive silencer factor, the transcription repressor that orchestrates nerve cell differentiation. Rat astrocyte cultures exhibited high levels of REST and expressed neither DCVs nor their markers (granins, peptides, and membrane proteins). Transfection of dominant-negative construct of REST induced the appearance of DCVs filled with secretogranin 2 and neuropeptide Y (NPY) and distinct from other organelles. Total internal reflection fluorescence analysis revealed NPY-monomeric red fluorescent protein-labeled DCVs to undergo Ca21 -dependent exocytosis, which was largely prevented by botulinum toxin B. In the I-II layers of the human temporal brain cortex, all neurons and microglia exhibited the expected inappreciable and high levels of REST, respectively. In contrast, astrocyte RESTwas variable, going from inappreciable to high, and accompanied by a variable expression of DCVs. In conclusion, astrocyte DCV expression and gliosecretion are governed by REST. The variable in situ REST levels may contribute to the wellknown structural/ functional heterogeneity of astrocytes.
Resumo:
With the aim to evaluate the circulating cathodic antigen (CCA) levels in relation to the different clinical phases of Schistosoma sp. infection a sandwich ELISA using monoclonal antibody 5H11 was performed. The sera of three groups of 25 Brazilian patients with acute, intestinal and hepatosplenic forms of S. mansoni infection were tested and compared to a non-infected control group. Patients and control groups were matched for age and sex and the number of eggs per gram of feces was equally distributed among the three patient groups. Sensitivity of 100%, 72%, 52% of the assay was observed for the intestinal, hepatosplenic and acute toxemic groups respectively. The specificity was 100%. Intestinal and hepatosplenic groups presented CCA levels significantly higher in comparison to those observed for acute patients (F-ratio = 2,524; p = 0.000 and F-ratio = 6,314; p = 0.015 respectively). There was no significant difference of CCA serum levels between hepatosplenic and intestinal groups (F-ratio = 1,026; p = 0.316).
Resumo:
All developmental transitions throughout the life cycle of a plant are influenced by light. In Arabidopsis, multiple photoreceptors including the UV-A/blue-sensing cryptochromes (cry1-2) and the red/far-red responsive phytochromes (phyA-E) monitor the ambient light conditions. Light-regulated protein stability is a major control point of photomorphogenesis. The ubiquitin E3 ligase COP1 (constitutively photomorphogenic 1) regulates the stability of several light-signaling components. HFR1 (long hypocotyl in far-red light) is a putative transcription factor with a bHLH domain acting downstream of both phyA and the cryptochromes. HFR1 is closely related to PIF1, PIF3, and PIF4 (phytochrome interacting factor 1, 3 and 4), but in contrast to the latter three, there is no evidence for a direct interaction between HFR1 and the phytochromes. Here, we show that the protein abundance of HFR1 is tightly controlled by light. HFR1 is an unstable phosphoprotein, particularly in the dark. The proteasome and COP1 are required in vivo to degrade phosphorylated HFR1. In addition, HFR1 can interact with COP1, consistent with the idea of COP1 directly mediating HFR1 degradation. We identify a domain, conserved among several bHLH class proteins involved in light signaling , as a determinant of HFR1 stability. Our physiological experiments indicate that the control of HFR1 protein abundance is important for a normal de-etiolation response.
Resumo:
DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria. What are then the specific advantages of reduced supercoiling density that is maintained in vivo? Using Brownian dynamics simulations and atomic force microscopy we show here that thanks to physiological DNA-DNA crowding DNA molecules with reduced supercoiling density are still sufficiently supercoiled to stimulate interaction between cis-regulatory elements. On the other hand, weak supercoiling permits DNA molecules to modulate their overall shape in response to physiological changes in DNA crowding. This plasticity of DNA shapes may have regulatory role and be important for the postreplicative spontaneous segregation of bacterial chromosomes.
Resumo:
The peroxisome proliferator-activated receptor gamma (PPARgamma) is highly expressed in the colon mucosa and its activation has been reported to protect against colitis. We studied the involvement of PPARgamma and its heterodimeric partner, the retinoid X receptor (RXR) in intestinal inflammatory responses. PPARgamma(1/)- and RXRalpha(1/)- mice both displayed a significantly enhanced susceptibility to 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis compared with their wild-type littermates. A role for the RXR/PPARgamma heterodimer in the protection against colon inflammation was explored by the use of selective RXR and PPARgamma agonists. TNBS-induced colitis was significantly reduced by the administration of both PPARgamma and RXR agonists. This beneficial effect was reflected by increased survival rates, an improvement of macroscopic and histologic scores, a decrease in tumor necrosis factor alpha and interleukin 1beta mRNA levels, a diminished myeloperoxidase concentration, and reduction of nuclear factor kappaB DNA binding activity, c-Jun NH(2)-terminal kinase, and p38 activities in the colon. When coadministered, a significant synergistic effect of PPARgamma and RXR ligands was observed. In combination, these data demonstrate that activation of the RXR/PPARgamma heterodimer protects against colon inflammation and suggest that combination therapy with both RXR and PPARgamma ligands might hold promise in the clinic due to their synergistic effects.
Resumo:
INTRODUCTION: Central nervous system prophylaxis of childhood acute lymphoblastic leukemia has dropped rates of relapses but has been associated with neurotoxicity and imaging abnormalities. Predictors of neurotoxicity are lacking, because of inconsistency between clinical symptoms and imaging. Some have suggested that cerebrospinal fluid myelin basic protein (MBP) levels to be of potential interest. A retrospective analysis of MBP levels in correlation with clinical and radiologic data is presented. MATERIALS AND METHODS: MBP levels obtained at the time of intrathecals, charts, and neuroradiology reports were retrospectively analyzed. Academic achievement data were obtained from phone contacts with patients and families. RESULTS: We retrieved 1248 dosages of MBP in 83 patients, 381 neurologic examinations in 34 patients and 69 neuroradiologic investigations in 27 patients. Fifty-two patients had abnormal MBP levels. Radiologic anomalies were present in 47% of those investigated, 14% of them having school difficulties. Proportions of patients with school difficulties in the groups with abnormal MBP levels but no radiologic anomalies or with no radiologic investigations were 0% and 3%, respectively, which was lower than in the group of patients with normal MBP levels (100%, 22%, and 5%, respectively). DISCUSSION: Notwithstanding the retrospective character of our study, we conclude that there is limited usefulness of systematic dosage of MBP as indicator of treatment-induced neurotoxicity in acute lymphoblastic leukemia patients.
Resumo:
Monitoring of T-cell responses in genital mucosa has remained a major challenge because of the absence of lymphoid aggregates and the low abundance of T cells. Here we have adapted to genital tissue a sensitive real-time reverse transcription-PCR (TaqMan) method to measure induction of gamma interferon (IFN-gamma) mRNA transcription after 3 h of antigen-specific activation of CD8 T cells. For this purpose, we vaccinated C57BL/6 mice subcutaneously with human papillomavirus type 16 L1 virus-like particles and monitored the induction of CD8 T cells specific to the L1(165-173) H-2D(b)-restricted epitope. Comparison of the responses induced in peripheral blood mononuclear cells and lymph nodes (LN) by L1-specific IFN-gamma enzyme-linked immunospot assay and TaqMan determination of the relative increase in L1-specific IFN-gamma mRNA induction normalized to the content of CD8b mRNA showed a significant correlation, despite the difference in the readouts. Most of the cervicovaginal tissues could be analyzed by the TaqMan method if normalization to glyceraldehyde-3-phosphate dehydrogenase mRNA was used and a significant L1-specific IFN-gamma induction was found in one-third of the immunized mice. This local response did not correlate with the immune responses measured in the periphery, with the exception of the sacral LN, an LN draining the genital mucosa, where a significant correlation was found. Our data show that the TaqMan method is sensitive enough to detect antigen-specific CD8 T-cell responses in the genital mucosa of individual mice, and this may contribute to elaborate effective vaccines against genital pathogens.
Resumo:
Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants, improving plant nutrition and diversity. Evidence exists suggesting that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. This potentially has two important consequences for their genetics. First, by random distribution of nuclei at spore formation, new offspring of an AMF could receive different complements of nucleotypes compared to the parent or siblings-we consider this as segregation. Second, genetic exchange between AMF would allow the mixing of nuclei, altering nucleotype diversity in new spores. Because segregation was assumed not to occur and genetic exchange has only recently been demonstrated, no attempts have been made to test whether this affects the symbiosis with plants. Here, we show that segregation occurs in the AMF Glomus intraradices and can enhance the growth of rice up to five times, even though neither parental nor crossed AMF lines induced a positive growth response. This process also resulted in an alteration of symbiosis-specific gene transcription in rice. Our results demonstrate that manipulation of AMF genetics has important consequences for the symbiotic effects on plants and could be used to enhance the growth of globally important crops.
Resumo:
The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway.