953 resultados para INTERMITTENT HYPOXIA
Resumo:
Incidence registration and survival data for non-melanocytic skin neoplasms and cutaneous melanoma have been abstracted from the population-based system of the Cancer Registry of the Swiss Canton of Vaud, which has been operating in a particularly favourable environment, since the large majority of cutaneous lesions resected in the area are examined by a pathologist. Among the 5,712 cases registered, 66.7% were basal-cell carcinomas, 20.6% squamous-cell cancers, 9.3% cutaneous melanomas and 3.4% other miscellaneous histological types. The distribution by histological type did not differ appreciably in the 2 sexes, but there were marked inter-sex differences as regards anatomical site. In both sexes, head and neck was by far the commonest localization for non-melanomatous neoplasms (69 to 81% of all incident cases), followed by trunk for basal-cell cancers (18% in males, 15% in females) and upper limb for squamous-cell (10% in males, 17% in females). The distribution of skin melanomas differed considerably between the 2 sexes, by far the commonest site being the trunk for males (45% of cases) and lower limbs for females (40%), followed by head and neck (22% in both sexes). Incidence rates for both basal- and squamous-cell cancers increased with age, and rates were higher in males for each localization except the lower limb. In contrast, incidence for melanoma was higher in females, and incidence rates did not increase with age above 55 years for all sites except head and neck. This can be interpreted in terms of cohort effect, since mortality from melanoma has substantially increased in Switzerland across subsequent birth cohorts. Although this study is essentially descriptive, accurate inspection of these data provides some support for the major aetiological hypotheses of skin carcinogenesis, i.e., the observation that the large majority of basal- and squamous-cell cancers arise on the head and neck confirms the importance of long-term ultraviolet exposure; the relative excess of squamous-cell as compared to basal-cell neoplasms on the upper limb may suggest the role of exposure to other (chemical) carcinogens; and the proportional excess of melanomas on the trunk in males and lower limb in females further indicates that intermittent exposure to sunlight is probably the relevant aetiologic factor for melanocytic skin neoplasms.
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
INTRODUCTION. Reduced cerebral perfusion pressure (CPP) may worsen secondary damage and outcome after severe traumatic brain injury (TBI), however the optimal management of CPP is still debated. STUDY HYPOTHESIS: We hypothesized that the impact of CPP on outcome is related to brain tissue oxygen tension (PbtO2) level and that reduced CPP may worsen TBI prognosis when it is associated with brain hypoxia. DESIGN. Retrospective analysis of prospective database. METHODS. We analyzed 103 patients with severe TBI who underwent continuous PbtO2 and CPP monitoring for an average of 5 days. For each patient, duration of reduced CPP (\60 mm Hg) and brain hypoxia (PbtO2\15 mm Hg for[30 min [1]) was calculated with linear interpolation method and the relationship between CPP and PbtO2 was analyzed with Pearson's linear correlation coefficient. Outcome at 30 days was assessed with the Glasgow Outcome Score (GOS), dichotomized as good (GOS 4-5) versus poor (GOS 1-3). Multivariable associations with outcome were analyzed with stepwise forward logistic regression. RESULTS. Reduced CPP (n=790 episodes; mean duration 10.2 ± 12.3 h) was observed in 75 (74%) patients and was frequently associated with brain hypoxia (46/75; 61%). Episodes where reduced CPP were associated with normal brain oxygen did not differ significantly between patients with poor versus those with good outcome (8.2 ± 8.3 vs. 6.5 ± 9.7 h; P=0.35). In contrast, time where reduced CPP occurred simultaneously with brain hypoxia was longer in patients with poor than in those with good outcome (3.3±7.4 vs. 0.8±2.3 h; P=0.02). Outcome was significantly worse in patients who had both reduced CPP and brain hypoxia (61% had GOS 1-3 vs. 17% in those with reduced CPP but no brain hypoxia; P\0.01). Patients in whom a positive CPP-PbtO2 correlation (r[0.3) was found also were more likely to have poor outcome (69 vs. 31% in patients with no CPP-PbtO2 correlation; P\0.01). Brain hypoxia was an independent risk factor of poor prognosis (odds ratio for favorable outcome of 0.89 [95% CI 0.79-1.00] per hour spent with a PbtO2\15 mm Hg; P=0.05, adjusted for CPP, age, GCS, Marshall CT and APACHE II). CONCLUSIONS. Low CPP may significantly worsen outcome after severe TBI when it is associated with brain tissue hypoxia. PbtO2-targeted management of CPP may optimize TBI therapy and improve outcome of head-injured patients.
Resumo:
High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.
Resumo:
To determine whether a 4-a-side handball (HB) game is an appropriate aerobic stimulus to reach and potentially enhance maximal oxygen uptake (V O(2)max), and whether heart rate (HR) is a valid index of V O(2) during a handball game. Nine skilled players (21.0+/-2.9 yr) underwent a graded maximal aerobic test (GT) where V O(2)max and HR-V O(2) relationship were determined. V O(2), HR and blood lactate ([La](b)) were recorded during a 2 x 225 s (interspersed with 30s rest) 4-a-side handball game and were compared to those measured during an 480-s running intermittent exercise (IE). Mean V O(2) tended to be higher in handball compared to IE (93.9+/-8.5 vs. 87.6+/-7.4% O(2)max, p=0.06), whereas HR was similar (92.3+/-4.9 vs. 93.9+/-3.9% of the peak of HR, p=0.10). [La](b) was lower for handball than for IE (8.9+/-3.5 vs. 11.6+/-2.1 mmol l(-1), p=0.04). Time spent over 90% of V O(2)max was higher for handball than for IE (336.1+/-139.6s vs. 216.1+/-124.7s; p=0.03). The HR-V O(2) relationship during GT was high (r(2)=0.96, p<0.001) but estimated V O(2) from HR was lower to that measured (p=0.03) in handball, whereas there was no difference in IE. 4-a-side handball game can be used as a specific alternative to IE for enhancing aerobic fitness in handball players. Nevertheless, the accuracy of HR measures for estimating V O(2) during handball is poor.
Resumo:
The subclinical form of visceral leishmaniasis (VL) shows nonspecific clinical manifestations, with difficulties being frequently met in its clinical characterization and diagnostic confirmation. Thus, the objective of the present study was to define the clinical-laboratory profile of this clinical form. A cohort study was conducted in the state of Maranhão, Brazil, from January/1998 to December/2000, with monthly follow-up of 784 children aged 0-5 years. Based on the clinical-laboratory parameters reported in the literature, four categories were established, with the children being classified (according to their clinical-evolutive behavior) as asymptomatic (N = 144), as having the subclinical form (N = 33) or the acute form (N = 12) or as subjects "without VL" (N = 595). Multiple discriminant analysis demonstrated that the combination of fever, hepatomegaly, hyperglobulinemia, and increased blood sedimentation rate (BSR) can predict the subclinical form of VL as long as it is not associated with splenomegaly or leukopenia. Subjects with the subclinical form did not show prolonged or intermittent evolution or progression to the acute form of VL. Subclinical cases have a profile differing from the remaining clinical forms of VL, being best characterized by the combination of fever, hepatomegaly, hyperglobulinemia, and increased BSR.
Resumo:
Growing evidence suggests that endogenous lactate is an important substrate for neurons. This study aimed to examine cerebral lactate metabolism and its relationship with brain perfusion in patients with severe traumatic brain injury (TBI). A prospective cohort of 24 patients with severe TBI monitored with cerebral microdialysis (CMD) and brain tissue oxygen tension (PbtO2) was studied. Brain lactate metabolism was assessed by quantification of elevated CMD lactate samples (>4 mmol/L); these were matched to CMD pyruvate and PbtO2 values and dichotomized as glycolytic (CMD pyruvate >119 μmol/L vs. low pyruvate) and hypoxic (PbtO2 <20 mm Hg vs. nonhypoxic). Using perfusion computed tomography (CT), brain perfusion was categorized as oligemic, normal, or hyperemic, and was compared with CMD and PbtO2 data. Samples with elevated CMD lactate were frequently observed (41±8%), and we found that brain lactate elevations were predominantly associated with glycolysis and normal PbtO2 (73±8%) rather than brain hypoxia (14±6%). Furthermore, glycolytic lactate was always associated with normal or hyperemic brain perfusion, whereas all episodes with hypoxic lactate were associated with diffuse oligemia. Our findings suggest predominant nonischemic cerebral extracellular lactate release after TBI and support the concept that lactate may be used as an energy substrate by the injured human brain.
Resumo:
PURPOSE: Both acute hypoxia and physical exercise are known to increase oxidative stress. This randomized prospective trial investigated whether the addition of moderate exercise can alter oxidative stress induced by continuous hypoxic exposure. METHODS: Fourteen male participants were confined to 10-d continuous normobaric hypoxia (FIO2 = 0.139 +/- 0.003, PIO2 = 88.2 +/- 0.6 mm Hg, approximately 4000-m simulated altitude) either with (HCE, n = 8, two training sessions per day at 50% of hypoxic maximal aerobic power) or without exercise (HCS, n = 6). Plasma levels of oxidative stress markers (advanced oxidation protein products [AOPP], nitrotyrosine, and malondialdehyde), antioxidant markers (ferric-reducing antioxidant power, superoxide dismutase, glutathione peroxidase, and catalase), nitric oxide end-products, and erythropoietin were measured before the exposure (Pre), after the first 24 h of exposure (D1), after the exposure (Post) and after the 24-h reoxygenation (Post + 1). In addition, graded exercise test in hypoxia was performed before and after the protocol. RESULTS: Maximal aerobic power increased after the protocol in HCE only (+6.8%, P < 0.05). Compared with baseline, AOPP was higher at Post + 1 (+28%, P < 0.05) and nitrotyrosine at Post (+81%, P < 0.05) in HCS only. Superoxide dismutase (+30%, P < 0.05) and catalase (+53%, P < 0.05) increased at Post in HCE only. Higher levels of ferric-reducing antioxidant power (+41%, P < 0.05) at Post and lower levels of AOPP (-47%, P < 0.01) at Post + 1 were measured in HCE versus HCS. Glutathione peroxidase (+31%, P < 0.01) increased in both groups at Post + 1. Similar erythropoietin kinetics was noted in both groups with an increase at D1 (+143%, P < 0.01), a return to baseline at Post, and a decrease at Post + 1 (-56%, P < 0.05). CONCLUSIONS: These data provide evidence that 2 h of moderate daily exercise training can attenuate the oxidative stress induced by continuous hypoxic exposure.
Resumo:
Asthma results from allergen-driven intrapulmonary Th2 response, and is characterized by intermittent airway obstruction, airway hyperreactivity (AHR), and airway inflammation. Accumulating evidence indicates that inflammatory diseases of the respiratory tract are commonly associated with elevated production of nitric oxide (NO). It has been shown that exhaled NO may be derived from constitutive NO synthase (NOS) such as endothelial (NOS 3) and neural (NOS 1) in normal airways, while increased levels of NO in asthma appear to be derived from inducible NOS2 expressed in the inflamed airways. Nevertheless, the functional role of NO and NOS isoforms in the regulation of AHR and airway inflammation in human or experimental models of asthma is still highly controversial. In the present commentary we will discuss the role of lipopolysaccharides contamination of allergens as key element in the controversy related to the regulation of NOS2 activity in experimental asthma.
Resumo:
Background: Respiratory care is universally recognised as useful, but its indications and practice vary markedly. In order to improve appropriateness of respiratory care in our hospital, we developed evidence-based local guidelines in a collaborative effort involving physiotherapists, physicians, and health services researchers. Methods: Recommendations were developed using the standardised RAND appropriateness method. A literature search was performed for the period between 1995 and 2008 based on terms associated with guidelines and with respiratory care. Publications were assessed according to the Oxford classification of quality of evidence. A working group prepared proposals for recommendations which were then independently rated by a multidisciplinary expert panel. All recommendations were then discussed in common and indications for procedures were rated confidentially a second time by the experts. Each indication for respiratory care was classified as appropriate, uncertain, or inappropriate, based on the panel median rating and the degree of intra-panel agreement. Results: Recommendations were formulated for the following procedures: non-invasive ventilation, continuous positive airway pressure, intermittent positive pressure breathing, intrapulmonary percussive ventilation, mechanical insufflation-exsufflation, incentive spirometry, positive expiratory pressure, nasotracheal suctioning, noninstrumental airway clearance techniques. Each recommendation referred to a particular medical condition, and was assigned to a hierarchical category based on the quality of evidence from literature supporting the recommendation and on the consensus of experts. Conclusion: Despite a marked heterogeneity of scientific evidence, the method used allowed us to develop commonly agreed local guidelines for respiratory care. In addition, this work fostered a closer relationship between physiotherapists and physicians in our institution.
Resumo:
OBJECTIVES: To characterize the pathogenesis and clinical features of optic disc edema associated with obstructive sleep apnea syndrome (SAS). METHODS: A series of 4 patients with SAS and papilledema (PE) underwent complete neuro-ophthalmologic evaluation and lumbar puncture. In 1 patient, continuous 24-hour intracranial pressure (ICP) monitoring was also performed. RESULTS: All 4 patients had bilateral PE that was asymmetric in 2. Three patients had optic nerve dysfunction, asymmetric in 1, unilateral in 2. Daytime cerebrospinal fluid pressure measurements were within normal range. Nocturnal monitoring performed in one patient, however, demonstrated repeated episodes of marked ICP elevation associated with apnea and arterial oxygen desaturation. CONCLUSIONS: We propose that PE in SAS is due to episodic nocturnal hypoxemia and hypercarbia resulting in increased ICP secondary to cerebral vasodilation. In these individuals, intermittent ICP elevation is sufficient to cause persistent disc edema. These patients may be at increased risk for developing visual loss secondary to PE compared with patients with obesity-related pseudotumor cerebri because of associated hypoxemia. The diagnosis of SAS PE may not be appreciated because daytime cerebrospinal fluid pressure measurements are normal and because patients tend to present with visual loss rather than with symptoms of increased ICP.
Resumo:
Acute exercise increases energy expenditure (EE) during exercise and post-exercise recovery [excess post-exercise oxygen consumption (EPOC)] and therefore may be recommended as part of the multidisciplinary management of obesity. Moreover, chronic exercise (training) effectively promotes an increase in insulin sensitivity, which seems to be associated with increased fat oxidation rates (FORs). The main purpose of this thesis is to investigate 1) FORs and extra-muscular factors (hormones and plasma metabolites) that regulate fat metabolism during acute and chronic exercise; and 2) EPOC during acute post-exercise recovery in obese and severely obese men (class II and III). In the first study, we showed that obese and severely obese men present a lower exercise intensity (Fatmax) eliciting maximal fat oxidation and a lower reliance on fat oxidation at high, but not at low and moderate, exercise intensities compared to lean men. This was most likely related to an impaired muscular capacity to oxidize non-esterified fatty acids (NEFA) rather than decreased plasma NEFA availability or a change in the hormonal milieu during exercise. In the second study, we developed an accurate maximal incremental test to correctly and simultaneously evaluate aerobic fitness and fat oxidation kinetics during exercise in this population. This test may be used for the prescription of an appropriate exercise training intensity. In the third study, we demonstrated that only 2 wk of exercise training [continuous training at Fatmax and adapted high-intensity interval training (HIIT)], matched with respect to mechanical work, may be effective to improve aerobic fitness, FORs during exercise and insulin sensitivity, which suggest that FORs might be rapidly improved and that adapted HIIT is feasible in this population. The increased FORs concomitant with the lack of changes in lipolysis during exercise suggest an improvement in the mismatching between NEFA availability and oxidation, highlighting the importance of muscular (oxidative capacity) rather than extra-muscular (hormones and plasma metabolites) factors in the regulation of fat metabolism after a training program. In the fourth study, we observed a positive correlation between EE during exercise and EPOC, suggesting that a chronic increase in the volume or intensity of exercise may increase EE during exercise and during recovery. This may have an impact in weight management in obesity. In conclusion, these findings might have practical implications for exercise training prescriptions in order to improve the therapeutic approaches in obesity and severe obesity. -- L'exercice aigu augmente la dépense énergétique (DE) pendant l'exercice et la récupération post-exercice [excès de consommation d'oxygène post-exercise (EPOC)] et peut être utilisé dans la gestion multidisciplinaire de l'obésité. Quant à l'exercice chronique (entraînement), il est efficace pour augmenter la sensibilité à l'insuline, ce qui semble être associé à une amélioration du débit d'oxydation lipidique (DOL). Le but de cette thèse est d'étudier 1) le DOL et les facteurs extra-musculaires (hormones et métabolites plasmatiques) qui régulent le métabolisme lipidique pendant l'exercice aigu et chronique et 2) l'EPOC lors de la récupération aiguë post-exercice chez des hommes obèses et sévèrement obèses (classe II et III). Dans la première étude nous avons montré que les hommes obèses et sévèrement obèses présentent une plus basse intensité d'exercice (Fatmax) correspondant au débit d'oxydation lipidique maximale et un plus bas DOL à hautes, mais pas à faibles et modérées, intensités d'exercice comparé aux sujets normo-poids, ce qui est probablement lié à une incapacité musculaire à oxyder les acides gras non-estérifiés (AGNE) plutôt qu'à une diminution de leur disponibilité ou à un changement du milieu hormonal pendant l'exercice. Dans la deuxième étude nous avons développé un test maximal incrémental pour évaluer simultanément l'aptitude physique aérobie et la cinétique d'oxydation des lipides pendant l'exercice chez cette population. Dans la troisième étude nous avons montré que seulement deux semaines d'entraînement (continu à Fatmax et intermittent à haute intensité), appariés par la charge de travail, sont efficaces pour améliorer l'aptitude physique aérobie, le DOL pendant l'exercice et la sensibilité à l'insuline, ce qui suggère que le DOL peut être rapidement amélioré chez cette population. Ceci, en absence de changements de la lipolyse pendant l'exercice, suggère une amélioration de la balance entre la disponibilité et l'oxydation des AGNE, ce qui souligne l'importance des facteurs musculaires (capacité oxydative) plutôt que extra-musculaires (hormones et métabolites plasmatiques) dans la régulation du métabolisme lipidique après un entraînement. Dans la quatrième étude nous avons observé une corrélation positive entre la DE pendant l'exercice et l'EPOC, ce qui suggère qu'une augmentation chronique du volume ou de l'intensité de l'exercice pourrait augmenter la DE lors de l'exercice et lors de la récupération post-exercice. Ceci pourrait avoir un impact sur la gestion du poids chez cette population. En conclusion, ces résultats pourraient avoir des implications pratiques lors de la prescription des entraînements dans le but d'améliorer les approches thérapeutiques de l'obésité et de l'obésité sévère.
Resumo:
The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.
Resumo:
Résumé : Emotion et cognition sont deux termes généralement employés pour désigner des processus psychiques de nature opposée. C'est ainsi que les sciences cognitives se sont longtemps efforcées d'écarter la composante «chaude »des processus «froids »qu'elles visaient, si ce n'est pour montrer l'effet dévastateur de la première sur les seconds. Pourtant, les processus cognitifs (de collecte, maintien et utilisation d'information) et émotioAnels (d'activation subjective, physiologique et comportementale face à ce qui est attractif ou aversif) sont indissociables. Par l'approche neuro-éthologique, à l'interface entre le substrat biologique et les manifestations comportementales, nous nous sommes intéressés à une fonction cognitive essentielle, la fonction mnésique, classiquement exprimée chez le rongeur par l'orientation spatiale. Au niveau du substrat, McDonald et White (1993) ont montré la dissociation de trois systèmes de mémoire, avec les rôles de l'hippocampe, du néostriatum et de l'amygdale dans l'encodage des informations respectivement épisodiques, procédurales et émotionnelles. Nous nous sommes penchés sur l'interaction entre ces systèmes en fonction de la dimension émotionnelle par l'éclairage du comportement. L'état émotionnel de l'animal dépend de plusieurs facteurs, que nous avons tenté de contrôler indirectement en comparant leurs effets sur l'acquisition, dans diverses conditions, de la tâche de Morris (qui nécessite la localisation dans un bassin de la position d'une plate-forme submergée), ainsi que sur le style d'exploration de diverses arènes, ouvertes ou fermées, plus ou moins structurées par la présence de tunnels en plexiglas transparent. Nous avons d'abord exploré le rôle d'un composant du système adrénergique dans le rapport à la difficulté et au stress, à l'aide de souris knock-out pour le récepteur à la noradrénaline a-1 B dans un protocole avec 1 ou 4 points de départ dans un bassin partitionné. Ensuite, nous nous sommes penchés, chez le rat, sur les effets de renforcement intermittent dans différentes conditions expérimentales. Dans ces conditions, nous avons également tenté d'analyser en quoi la situation du but dans un paysage donné pouvait interférer avec les effets de certaines formes de stress. Finalement, nous avons interrogé les conséquences de perturbations passées, y compris le renforcement partiel, sur l'organisation des déplacements sur sol sec. Nos résultats montrent la nécessité, pour les souris cont~ô/es dont l'orientation repose sur l'hippocampe, de pouvoir varier les trajectoires, ce qui favoriserait la constitution d'une carte cognitive. Les souris a->B KO s'avèrent plus sensibles au stress et capables de bénéficier de la condition de route qui permet des réponses simples et automatisées, sous-tendues par l'activité du striatum. Chez les rats en bassin 100% renforcé, l'orientation apparaît basée sur l'hippocampe, relayée par le striatum pour le développement d'approches systématiques et rapides, avec réorientation efficace en nouvelle position par réactivation dépendant de l'hippocampe. A 50% de renforcement, on observe un effet du type de déroulement des sessions, transitoirement atténué par la motivation Lorsque les essais s'enchaînent sans pause intrasession, les latences diminuent régulièrement, ce qui suggère une prise en charge possible par des routines S-R dépendant du striatum. L'organisation des mouvements exploratoires apparaît dépendante du niveau d'insécurité, avec différents profils intermédiaires entre la différentiation maximale et la thigmotaxie, qui peuvent être mis en relation avec différents niveaux d'efficacité de l'hippocampe. Ainsi, notre travail encourage à la prise en compte de la dimension émotionnelle comme modulatrice du traitement d'information, tant en phase d'exploration de l'environnement que d'exploitation des connaissances spatiales. Abstract : Emotion and cognition are terms widely used to refer to opposite mental processes. Hence, cognitive science research has for a long time pushed "hot" components away from "cool" targeted processes, except for assessing devastating effects of the former upon the latter. However, cognitive processes (of information collection, preservation, and utilization) and emotional processes (of subjective, physiological, and behavioral activation roue to attraction or aversion) are inseparable. At the crossing between biological substrate and behavioral expression, we studied a chief cognitive function, memory, classically shown in animals through spatial orientation. At the substrate level, McDonald et White (1993) have shown a dissociation between three memory systems, with the hippocampus, neostriatum, and amygdala, encoding respectively episodic, habit, and emotional information. Through the behavior of laboratory rodents, we targeted the interaction between those systems and the emotional axis. The emotional state of an animal depends on different factors, that we tried to check in a roundabout way by the comparison of their effects on acquisition, in a variety of conditions, of the Morris task (in which the location of a hidden platform in a pool is required), as well as on the exploration profile in different apparatus, open-field and closed mazes, more or less organized by clear Plexiglas tunnels. We first tracked the role, under more or less difficult and stressful conditions, of an adrenergic component, with knock-out mice for the a-1 B receptor in a partitioned water maze with 1 or 4 start positions. With rats, we looked for the consequences of partial reinforcement in the water maze in different experimental conditions. In those conditions, we further analyzed how the situation of the goal in the landscape could interfere with the effect of a given stress. At last, we conducted experiments on solid ground, in an open-field and in radial mazes, in order to analyze the organization of spatial behavior following an aversive life event, such as partial reinforcement training in the water maze. Our results emphasize the reliance of normal mice to be able to vary approach trajectories. One of our leading hypotheses is that such strategies are hippocampus-dependent and are best developed for of a "cognitive map like" representation. Alpha-1 B KO mice appear more sensitive to stress and able to take advantage of the route condition allowing simple and automated responses, most likely striatum based. With rats in 100% reinforced water maze, the orientation strategy is predominantly hippocampus dependent (as illustrated by the impairment induced by lesions of this structure) and becomes progressively striatum dependent for the development of systematic and fast successful approaches. Training towards a new platform position requires a hippocampus based strategy. With a 50% reinforcement rate, we found a clear impairment related to intersession disruption, an effect transitorily minimized by motivation enhancement (cold water). When trials are given without intrasession interruption, latencies consistently diminish, suggesting a possibility for striatum dependent stimulus-response routine to occur. The organization of exploratory movements is shown to depend on the level of subjective security, with different intermediary profiles between maximum differentiation and thigmotaxy, which can be considered in parallel with different efficiency levels of the hippocampus dependent strategies. Thus, our work fosters the consideration of emotion as a cognitive treatment modulator, during spatial exploration as well as spatial learning. It leads to a model in which the predominance of hippocampus based exploration is challenged by training conditions of various nature.
Resumo:
In this review, we discuss a paradigm whereby changes in the intragraft microenvironment promote or sustain the development of chronic allograft rejection. A key feature of this model involves the microvasculature including (a) endothelial cell (EC) destruction, and (b) EC proliferation, both of which result from alloimmune leukocyte- and/or alloantibody-induced responses. These changes in the microvasculature likely create abnormal blood flow patterns and thus promote local tissue hypoxia. Another feature of the chronic rejection microenvironment involves the overexpression of vascular endothelial growth factor (VEGF). VEGF stimulates EC activation and proliferation and it has potential to sustain inflammation via direct interactions with leukocytes. In this manner, VEGF may promote ongoing tissue injury. Finally, we review how these events can be targeted therapeutically using mTOR inhibitors. EC activation and proliferation as well as VEGF-VEGFR interactions require PI-3K/Akt/mTOR intracellular signaling. Thus, agents that inhibit this signaling pathway within the graft may also target the progression of chronic rejection and thus promote long-term graft survival.