963 resultados para INFLAMMATORY CYTOKINE PRODUCTION


Relevância:

50.00% 50.00%

Publicador:

Resumo:

INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC) and peripheral blood mononuclear cells (PBMC) of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Tuberculosis has great public health impact with high rates of mortality and the only prophylactic measure for it is the Mycobacterium bovisbacillus Calmette-Guérin (BCG) vaccine. The present study evaluated the release of cytokines [interleukin (IL)-1, tumour necrosis factor and IL-6] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-1β] by THP-1 derived macrophages infected with BCG vaccine obtained by growing mycobacteria in Viscondessa de Moraes Institute medium medium (oral) or Sauton medium (intradermic) to compare the effects of live and heat-killed (HK) mycobacteria. Because BCG has been reported to lose viability during the lyophilisation process and during storage, we examined whether exposing BCG to different temperatures also triggers differences in the expression of some important cytokines and chemokines of the immune response. Interestingly, we observed that HK mycobacteria stimulated cytokine and chemokine production in a different pattern from that observed with live mycobacteria.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Monocytes and macrophages can produce a large repertoire of cytokines and participate in the pathogenesis of granulomatous diseases. We investigated the production of pro- and anti-inflammatory cytokines by monocytes from patients with active paracoccidioidomycosis. Peripheral blood monocytes from 37 patients and 29 healthy controls were cultivated with or without 10 mug/ml of lipopolysaccharide (LPS) for 18 h at 37 degreesC, and the cytokine levels were determined in the culture supernatants by enzyme immunoassay. The results showed that the endogenous levels of tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10 and transforming growth factor beta detected in the supernatant of patient monocytes cultivated without stimulus were significantly higher than those produced by healthy controls. These data demonstrated that monocytes from patients with active paracoccidioidomycosis produce high levels of cytokines with both inflammatory and anti-inflammatory activities. However, patient monocytes produced significantly lower TNF-alpha and IL-6 levels in response to LPS when compared to normal subjects, suggesting an impairment in their capacity to produce these cytokines after LPS stimulation. Concentrations of IL-1beta, IL-8 and IL-10 in cultures stimulated with LPS were higher in patients than in controls. These results suggest that an imbalance in the production of pro- and anti-inflammatory cytokines might be associated with the pathogenesis of paracoccidioidomycosis. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lopap (Lonomia obliqua prothrombin activator protease) is a member of the lipocalin family isolated from the extract of L obliqua bristles. Lopap displays serine protease-like activities, including coagulation disturbance, cytokine secretion and antiapoptotic activity in human cultured endothelial cells. Here, we have investigated the effects of the recombinant protein (rLopap) on the inflammatory and apoptotic processes of neutrophils and endothelial cells from male Wistar rats. We found that rLopap did not induce in vivo leukocyte-endothelial interactions in the microvasculature, initial steps of leukocyte recruitment during inflammation. Incubation of rLopap with neutrophils or endothelial cells prevented apoptosis evoked by serum deprivation and induced nitric oxide (NO) production in both cell types, and increased the expression of ICAM-1 by endothelial cells. Simultaneous incubation of endothelial cells or neutrophils with rLopap and N(omega)-nitro-L-arginine methyl ester (L-NAME), a non-specific inhibitor of NO synthases, inhibited NO production and impaired the protection on apoptosis. Differently, incubation of endothelial cells with monoclonal antibody anti ICAM-1 did not change the protection on apoptosis evoked by rLopap. Together, these results indicate that rLopap does not display inflammatory properties in vivo but inhibits apoptosis of neutrophils and endothelial cells depending, at least in part, on NO production. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Budlein A has been reported to exert some analgesic and anti-inflammatory properties. In this study, we have evaluated its effect on LPS-induced leukocyte recruitment in vivo and the mechanisms involved in its anti-inflammatory activity. In vivo, intravital videomicroscopy was used to determine the effects of budlein A on LPS-induced leukocyte-endothelial cell interactions in the murine cremasteric microcirculation. In vitro, the effects of budlein A on LPS-induced cytokine, chemokine and nitrites release, T-cell proliferative response as well as cell adhesion molecule expression (CAM) were evaluated. In vivo, intraperitoneal administration of budlein A (2.6 mM/kg) caused a significant reduction of LPS-induced leukocyte rolling flux, adhesion and emigration by 84, 92 and 96% respectively. In vitro, T-cell proliferative response was also affected by budlein A. When murine J774 macrophages were incubated with the sesquiterpene lactone, LPS-induced IL-1 beta, tumor necrosis factor-alpha (TNF-alpha) and keratinocyte-derived chemokine (KC) release were concentration-dependently inhibited. In human umbilical vein endothelial cells (HUVECs), budlein A also reduced the production of TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), IL-8, nitrites and CAM expression elicited by LPS. Budlein A is a potent inhibitor of LPS-induced leukocyte accumulation in vivo. This effect appears to be mediated through inhibition of cytokine and chemokine release and down-regulation of CAM expression. Thus, it has potential therapeutic interest for the control of leukocyte recruitment that occurs in different inflammatory disorders. (C) 2009 Elsevier GrnbH. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Eccentric exercise commonly results in muscle damage. The primary sequence of events leading to exercise-induced muscle damage is believed to involve initial mechanical disruption of sarcomeres, followed by impaired excitation-contraction coupling and calcium signaling, and finally, activation of calcium-sensitive degradation pathways. Muscle damage is characterized by ultrastructural changes to muscle architecture, increased muscle proteins and enzymes in the bloodstream, loss of muscular strength and range of motion and muscle soreness. The inflammatory response to exercise-induced muscle damage is characterized by leukocyte infiltration and production of pro-inflammatory cytokines within damaged muscle tissue, systemic release of leukocytes and cytokines, in addition to alterations in leukocyte receptor expression and functional activity. Current evidence suggests that inflammatory responses to muscle damage are dependent on the type of eccentric exercise, previous eccentric loading (repeated bouts), age and gender. Circulating neutrophil counts and systemic cytokine responses are greater after eccentric exercise using a large muscle mass (e.g. downhill running, eccentric cycling) than after other types of eccentric exercise involving a smaller muscle mass. After an initial bout of eccentric exercise, circulating leukocyte counts and cell surface receptor expression are attenuated. Leukocyte and cytokine responses to eccentric exercise are impaired in elderly individuals, while cellular infiltration into skeletal muscle is greater in human females than males after eccentric exercise. Whether alterations in intracellular calcium homeostasis influence inflammatory responses to muscle damage is uncertain. Furthermore, the effects of antioxidant supplements are variable, and the limited data available indicates that anti-inflammatory drugs largely have no influence on inflammatory responses to eccentric exercise. In this review, we compare local versus systemic inflammatory responses, and discuss some of the possible mechanisms regulating the inflammatory responses to exercise-induced muscle damage in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Signal transduction through the surface molecule CD40 is critical for cellular activation in immunoinflammatory states such as sepsis. The mechanisms regulating this pathway are not completely understood. Because CD40 displays potentially regulatory cysteine residues and CD40 is probably exposed to NO in the inflammatory milieu, we hypothesized that S-nitrosylation, the interaction of NO with cysteines residues, acts as a post-translational modification on CD40, coregulating the signaling activity and, therefore, the level of cellular activation. As assessed by the biotin switch and the reduction/chemiluminescence S-nitrosylation detection techniques, CD40 was found to be S-nitrosylated endogenously and upon exposure to NO donors in both human and murine macrophages. S-nitrosylation of CD40 was associated with milder activation by its ligand (CD40L), leading to reduced in vitro cytokine (IL-1 beta, IL-12, and TNF-alpha) production, which was reversed in the presence of inhibitors of NO synthesis. S-nitrosylated CD40 was found in resting RAW 246.7 macrophages and BALB/c mice peritoneal macrophages, turning into the denitrosylated state upon in vitro or systemic exposure, respectively, to LPS. Moreover, monocytes from patients with sepsis displayed denitrosylated CD40 in contrast to the CD40 S-nitrosylation measured in healthy individuals. Finally, in an attempt to explain how S-nitrosylation regulates CD40 activation, we demonstrate that NO affects the redistribution of CD40 on the cell surface, which is a requirement for optimal signal transduction. Our results support a novel post-translational regulatory mechanism in which the CD40 signal may be, at least in part, dependent on cellular activation-induced receptor denitrosylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Endothelins (ETs) are involved in inflammatory events, including pain, fever, edema, and cell migration. ET-1 levels are increased in plasma and synovial membrane of rheumatoid arthritis (RA) patients, but the evidence that ETs participate in RA physiopathology is limited. The present study investigated the involvement of ETs in neutrophil accumulation and edema formation in the murine model of zymosan-induced arthritis. Intra-articular (i.a.) administration of selective ETA or ETB receptor antagonists (BQ-123 and BQ-788, respectively; 15 pmol/cavity) prior to i.a. zymosan injection (500 mu g/cavity) markedly reduced knee-joint edema formation and neutrophil influx to the synovial cavity 6 h and 24 h after stimulation. Histological analysis showed that ETA or ETB receptor blockade suppressed zymosan-induced neutrophil accumulation in articular tissue at 6 h. Likewise, dual blockade of ETA/ETB with bosentan (10 mg/kg, i.v.) also reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF-alpha production within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene B-4 at both time-points. Consistent with the demonstration that ET receptor antagonists inhibit zymosan-induced inflammation, i.a. injection of ET-1 (1-30 pmol/cavity) or sarafotoxin S6c (0.1-30 pmol/cavity) also triggered edema formation and neutrophil accumulation within 6 h. Moreover, knee-joint synovial tissue expressed ETA and ETB receptors. These findings suggest that endogenous ETs contribute to knee-joint inflammation, acting through ETA and ETB receptors and modulating edema formation, neutrophil recruitment, and production of inflammatory mediators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paracoccidioidomycosis, the major systemic mycosis in Latin America, is caused by fungus Paracoccidioides brasiliensis. To analyze the influence of inducible nitric oxide synthase (iNOS) in this disease, iNOS-deficient (iNOS(-/-)) and wild-type (WT) mice were infected intravenously with P. brasiliensis 18 isolate. We found that, unlike WT mice, iNOS(-/-) mice did not control fungal proliferation, and began to succumb to infection by day 50 after inoculation of yeast cells. Typical inflammatory granulomas were found in WT mice, while, iNOS(-/-) mice presented incipient granulomas with intense inflammatory process and necrosis. Additionally, splenocytes from iNOS(-/-) mice did not produce nitric oxide, however, their proliferative response to Con-A was impaired, just like infected WT mice. Moreover, infected iNOS(-/-) mice presented a mixed pattern of immune response, releasing high levels of both Th1 (IL-12, IFN-gamma and TNF-alpha) and Th2 (IL-4 and IL-10) cytokines. These data suggest that the enzyme iNOS is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, by influencing cytokines production, and by appeasing the development of a high inflammatory response and consequently formation of necrosis. However, iNOS-derived nitric oxide seems not being the unique factor responsible for immunosuppression observed in infections caused by P. brasiliensis. (c) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inflammatory cytokines contribute to periapical tissue destruction. Their activity is potentially regulated by suppressors of cytokine signaling (SOCS), which down-regulate signal transduction as part of an inhibitory feedback loop. We investigated the expression of the cytokines tumor necrosis factor alpha (TNF-alpha); interleukin (IL)-10 and RANKL; and SOCS-1, -2, and -3 by real-time polymerase chain reaction in 57 periapical granulomas and 38 healthy periapical tissues. Periapical granulomas exhibited significantly higher SOCS-1, -2, and -3, TNF-alpha, IL-10, and RANKL messenger RNA levels when compared with healthy controls. Significant positive correlations were found between SOCS1 and IL-10 and between SOCS3 and IL-10. Significant inverse correlations were observed between SOCS1 and TNF-alpha, SOCS1 and RANKL, and SOCS3 and TNF-alpha. Increased SOCS-1, -2, and -3 messenger RNA levels in periapical granulomas may be related to the downregulation of inflammatory cytokines in these lesions; therefore, SOCS molecules may play a role in the dynamics of periapical granulomas development. (J Endod 2008;34:1480-1484)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary cultures of human keratinocytes were challenged with increasing doses from 10 ng/mL to 2 mg/mL of Loxosceles gaucho venom, responsible for dermonecrotic lesion in humans. TNF-a was investigated by bioassay and ELISA in the supernatant of the cultures challenged with 100 ng/mL, 500 ng/mL, 1 and 2 mg/mL of venom. TNF-a was detected by bioassay in the supernatant of cultures challenged with 100 ng/mL, after 6 h. The cytokine was detected by ELISA in the supernatant of the cells challenged with doses of l mg/mL, after 6 and 12 h. The results point out the capacity of this venom to activate the keratinocytes in primary cultures to produce TNF-a. The production of cytokines could contribute to the local inflammatory process in patients bitten by Loxosceles sp.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer remains as one of the top killing diseases in first world countries. It’s not a single, but a set of various diseases for which different treatment approaches have been taken over the years. Cancer immunotherapy comes as a “new” breath on cancer treatment, taking use of the patients’ immune system to induce anti-cancer responses. Dendritic Cell (DC) vaccines use the extraordinary capacity of DCs’ antigen presentation so that specific T cell responses may be generated against cancer. In this work, we report the ex vivo generation of DCs from precursors isolated from clinical-grade cryopreserved umbilical cord blood (UCB) samples. After the thawing protocol for cryopreserved samples was optimized, the generation of DCs from CD14+ monocytes, i.e., moDCs, or CD34+ hematopoietic stem cells (HSCs), i.e, CD34-derived DCs, was followed and their phenotype and function evaluated. Functional testing included the ability to respond to maturation stimuli (including enzymatic removal of surface sialic acids), Ovalbumin-FITC endocytic capacity, cytokine secretion and T cell priming ability. In order to evaluate the feasibility of using DCs derived from UCB precursors to induce immune responses, they were compared to peripheral blood (PB) moDCs. We observed an increased endocytosis capacity after moDCs were differentiated from monocyte precursors, but almost 10-fold lower than that of PB moDCs. Maturation markers were absent, low levels of inflammatory cytokines were seen and T cell stimulatory capacity was reduced. Sialidase enzymatic treatment was able to mature these cells, diminishing endocytosis and promoting higher T cell stimulation. CD34-derived DCs showed higher capacity for both maturation and endocytic capacity than moDCs. Although much more information was acquired from moDCs than from CD34-derived DCs, we conclude the last as probably the best suited for generating an immune response against cancer, but of course much more research has to be performed.