869 resultados para INCREASED EXPRESSION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To study the effect of Echinacea tablets on the expression of leucocyte heat shock protein 70 (hsp70), erythrocyte haemolysis, plasma antioxidant status, serum chemistry, haematological values and plasma alkylamide concentrations. Method: Eleven healthy individuals (26-61 years of age) were evaluated at baseline (day 1) and on day 15 after consuming two commercially blended Echinacea tablets daily for 14 days. Results: Echinacea supplementation enhanced the fold increase in leucocyte hsp70 expression after a mild heat shock (P=0.029). White cell counts (WCC) were also increased (P=0.043). We also observed a preventative effect against free radical induced erythrocyte haemolysis (P=0.006) indicative of an antioxidant effect. Conclusion: The pilot study suggests that Echinacea may invoke an immune response through altered expression of hsp70 and increased WCC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oxidative stress and free radical production have been implicated in Alzheimer's disease, where low levels of the antioxidant vitamin C (ascorbate) have been shown to be associated with the disease. In this study, neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide in the presence of ascorbate in order to elucidate the me0chanism(s) of protection against oxidative stress afforded by ascorbate. Protein oxidation, glutathione levels, cell viability and the effects on the proteome and its oxidized counterpart were monitored. SH-SY5Y cells treated with ascorbate prior to co-incubation with peroxide showed increased viability in comparison to cells treated with peroxide alone. This dual treatment also caused an increase in protein carbonyl content and a decrease in glutathione levels within the cells. Proteins, extracted from SH-SY5Y cells that were treated with either ascorbate or peroxide alone or with ascorbate prior to peroxide, were separated by two-dimensional gel electrophoresis and analyzed for oxidation. Co-incubation for 24 hours decreased the number of oxidised proteins (e.g. acyl CoA oxidase 3) and induced brain derived neurotrophic factor (BDNF) expression. Enhanced expression of BDNF may contribute to the protective effects of ascorbate against oxidative stress in neuronal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Banana bunchy top is regarded as the most important viral disease of banana, causing significant yield losses worldwide. The disease is caused by Banana bunchy top virus (BBTV), which is a circular ssDNA virus belonging to the genus Babuvirus in the family Nanoviridae. There are currently few effective control strategies for this and other ssDNA viruses. “In Plant Activation” (InPAct) is a novel technology being developed at QUT for ssDNA virus-activated suicide gene expression. The technology exploits the rolling circle replication mechanism of ssDNA viruses and is based on a unique “split” gene design such that suicide gene expression is only activated in the presence of the viral Rep. This PhD project aimed to develop a BBTV-based InPAct system as a suicide gene strategy to control BBTV. The BBTV-based InPAct vector design requires a BBTV intergenic region (IR) to be embedded within an intron in the gene expression cassette. To ensure that the BBTV IR would not interfere with intron splicing, a TEST vector was initially generated that contained the entire BBTV IR embedded within an intron in a β-glucuronidase (GUS) expression vector. Transient GUS assays in banana embryogenic cell suspensions indicated that cryptic intron splice sites were present within the IR. Transcript analysis revealed two cryptic intron splice sites in the Domain III sequence of the CR-M within the IR. Removal of the CR-M from the TEST vector resulted in an enhancement of GUS expression suggesting that the cryptic intron splice sites had been removed. An InPAct GUS vector was subsequently generated that contained the modified BBTV IR, with the CR-M (minus Domain III) repositioned within the InPAct cassette. Using transient histochemical and fluorometric GUS assays in banana embryogenic cells, the InPAct GUS vector was shown to be activated in the presence of the BBTV Rep. However, the presence of both BBTV Rep and Clink was shown to have a deleterious effect on GUS expression suggesting that these proteins were cytotoxic at the levels expressed. Analysis of replication of the InPAct vectors by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector through the nicking/ligation activity of BBTV Rep. However, Rep-mediated episomal replicons, indicative of rolling circle replication of the released circularised cassettes, were not observed. The inability of the InPAct cassette to be replicated was further investigated. To examine whether the absence of Domain III of the CR-M was responsible, a suite of modified BBTV-based InPAct GUS vectors was constructed that contained the CR-M with the inclusion of Domain III, the CR-M with the inclusion of Domain III and additional upstream IR sequence, or no CR-M. Analysis of replication by Southern hybridisation revealed that neither the presence of Domain III, nor the entire CR-M, had an effect on replication levels. Since the InPAct cassette was significantly larger than the native BBTV genomic components (approximately 1 kb), the effect of InPAct cassette size on replication was also investigated. A suite of size variant BBTV-based vectors was constructed that increased the size of a replication competent cassette to 1.1 kbp through to 2.1 kbp.. Analysis of replication by Southern hybridisation revealed that an increase in vector size above approximately 1.5 - 1.7 kbp resulted in a decrease in replication. Following the demonstration of Rep-mediated release, circularisation and expression from the InPAct GUS vector, an InPAct vector was generated in which the uidA reporter gene was replaced with the ribonuclease-encoding suicide gene, barnase. Initially, a TEST vector was generated to assess the cytotoxicity of Barnase on banana cells. Although transient assays revealed a Barnase-induced cytotoxic effect in banana cells, the expression levels were sub-optimal. An InPAct BARNASE vector was generated and tested for BBTV Rep-activated Barnase expression using transient assays in banana embryogenic cells. High levels of background expression from the InPAct BARNASE vector made it difficult to accurately assess Rep-activated Barnase expression. Analysis of replication by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector but no Rep-mediated episomal replicons indicative of rolling circle replication of the released circularised cassettes were again observed. Despite the inability of the InPAct vectors to replicate to enable high level gene expression, the InPAct BARNASE vector was assessed in planta for BBTV Rep-mediated activation of Barnase expression. Eleven lines of transgenic InPAct BARNASE banana plants were generated by Agrobacterium-mediated transformation and were challenged with viruliferous Pentalonia nigronervosa. At least one clonal plant in each line developed bunchy top symptoms and infection was confirmed by PCR. No localised lesions were observed on any plants, nor was there any localised GUS expression in the one InPAct GUS line challenged with viruliferous aphids. The results presented in this thesis are the first study towards the development of a BBTV-based InPAct system as a Rep-activatable suicide gene expression system to control BBTV. Although further optimisation of the vectors is necessary, the preliminary results suggest that this approach has the potential to be an effective control strategy for BBTV. The use of iterons within the InPAct vectors that are recognised by Reps from different ssDNA plant viruses may provide a broad-spectrum resistance strategy against multiple ssDNA plant viruses. Further, this technology holds great promise as a platform technology for the molecular farming of high-value proteins in vitro or in vivo through expression of the ssDNA virus Rep protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmissible diseases are re-emerging as a global problem, with Sexually Transmitted Diseases (STDs) becoming endemic. Chlamydia trachomatis is the leading cause of bacterially-acquired STD worldwide, with the Australian cost of infection estimated at $90 - $160 million annually. Studies using animal models of genital tract Chlamydia infection suggested that the hormonal status of the genital tract epithelium at the time of exposure may influence the outcome of infection. Oral contraceptive use also increased the risk of contracting chlamydial infections compared to women not using contraception. Generally it was suggested that the outcome of chlamydial infection is determined in part by the hormonal status of the epithelium at the time of exposure. Using the human endolmetrial cell line ECC-1 this study investigated the effects of C. trachomatis serovar D infection, in conjunction with the female sex hormones, 17β-estradiol and progesterone, on chlamydial gene expression. While previous studies have examined the host response, this is the first study to examine C.trachomatis gene expression under different hormonal conditions. We have highlighted a basic model of C. trachomatis gene regulation in the presence of steroid hormones by identifying 60 genes that were regulated by addition of estradiol and/or progesterone. In addition, the third chapter of this thesis discussed and compared the significance of the current findings in the context of data from other research groups to improve our understanding of the molecular basis of chlamydial persistence under hormonal different conditions. In addition, this study analysed the effects of these female sex hormones and C. trachomatis Serovar D infection, on host susceptibility and bacterial growth. Our results clearly demonstrated that addition of steroid hormones not only had a great impact on the level of infectivity of epithelial cells with C.trachomatis serovar D, but also the morphology of chlamydial inclusions was affected by hormone supplementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1–green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have demonstrated that IGF-I associates with VN through IGF-binding proteins (IGFBP) which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment and migration. Since IGFs play important roles in transformation and progression of breast tumours, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of PI3-K/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and PI3-K pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue (\[L24]\[A31]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of ECM and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40 ng/ml in the culture medium, but decreased at 80 ng/ml. Under CoCl2- induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or antiangiogenic activities of BMSCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanism between atherosclerosis formation and periodontal pathogens is not clear although positive correlation between periodontal infections and cardiovascular diseases has been reported. Objective: To determine if atherosclerosis related genes were affected in foam cells during and after its formation by P. gingivalis lipopolysaccharide (LPS) stimulation. Methods: Macrophages from human THP-1 monocytes were treated with oxidized low density lipoprotein (oxLDL) to induce the formation of foam cells. P. gingivalis LPS was added to cultures of either oxLDL-induced macrophages or foam cells. The expression of atherosclerosis related genes was assayed by quantitative real time PCR and the protein production of granulocyte-macrophage colony-stimulating factor(GM-CSF), monocyte chemotactic protein-1 (MCP-1), IL-1β, IL-10 and IL-12 was determined by ELISA. Nuclear translocation of NF-κB P65 was detected by immunocytochemistry and western blot was used to evaluate IKB-α degradation to confirm the NF-κB pathway activation. Results: P. gingivalis LPS stimulated atherosclerosis related gene expression in foam cells and increased oxLDL induced expression of chemokines, adhesion molecules, growth factors, apoptotic genes, and nuclear receptors in macrophages. Transcription of the pro-inflammatory cytokines IL-1β and IL-12 was elevated in response to LPS in both macrophages and foam cells, whereas the anti-inflammatory cytokine IL-10 was not affected. Increased NF-κB pathway activation was also observed in LPS and oxLDL co-stimulated macrophages. Conclusion: P. gingivalis LPS appears to be an important factor in the development of atherosclerosis by stimulation of atherosclerosis related gene expression in both macrophages and foam cells via activation of the NF-κB pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have demonstrated an association between polycystic ovary syndrome (PCOS) and the dinucleotide repeat microsatellite marker D19S884, which is located in intron 55 of the fibrillin-3 (FBN3) gene. Fibrillins, including FBN1 and 2, interact with latent transforming growth factor (TGF)-β-binding proteins (LTBP) and thereby control the bioactivity of TGFβs. TGFβs stimulate fibroblast replication and collagen production. The PCOS ovarian phenotype includes increased stromal collagen and expansion of the ovarian cortex, features feasibly influenced by abnormal fibrillin expression. To examine a possible role of fibrillins in PCOS, particularly FBN3, we undertook tagging and functional single nucleotide polymorphism (SNP) analysis (32 SNPs including 10 that generate non-synonymous amino acid changes) using DNA from 173 PCOS patients and 194 controls. No SNP showed a significant association with PCOS and alleles of most SNPs showed almost identical population frequencies between PCOS and control subjects. No significant differences were observed for microsatellite D19S884. In human PCO stroma/cortex (n = 4) and non-PCO ovarian stroma (n = 9), follicles (n = 3) and corpora lutea (n = 3) and in human ovarian cancer cell lines (KGN, SKOV-3, OVCAR-3, OVCAR-5), FBN1 mRNA levels were approximately 100 times greater than FBN2 and 200–1000-fold greater than FBN3. Expression of LTBP-1 mRNA was 3-fold greater than LTBP-2. We conclude that FBN3 appears to have little involvement in PCOS but cannot rule out that other markers in the region of chromosome 19p13.2 are associated with PCOS or that FBN3 expression occurs in other organs and that this may be influencing the PCOS phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of adherent monolayer cultures have produced many insights into melanoma cell growth and differentiation, but often novel therapeutics demonstrated to act on these cells are not active in vivo. It is imperative that new methods of growing melanoma cells that reflect growth in vivo are investigated. To this end, a range of human melanoma cell lines passaged as adherent cultures or induced to form melanoma spheres (melanospheres) in stem cell media have been studied to compare cellular characteristics and protein expression. Melanoma spheres and tumours grown from cell lines as mouse xenografts had increased heterogeneity when compared with adherent cells and 3D-spheroids in agar (aggregates). Furthermore, cells within the melanoma spheres and mouse xenografts each displayed a high level of reciprocal BRN2 or MITF expression, which matched more closely the pattern seen in human melanoma tumours in situ, rather than the propensity for co-expression of these important melanocytic transcription factors seen in adherent cells and 3D-spheroids. Notably, when the levels of the BRN2 and MITF proteins were each independently repressed using siRNA treatment of adherent melanoma cells, members of the NOTCH pathway responded by decreasing or increasing expression, respectively. This links BRN2 as an activator, and conversely, MITF as a repressor of the NOTCH pathway in melanoma cells. Loss of the BRN2-MITF axis in antisense-ablated cell lines decreased the melanoma sphere-forming capability, cell adhesion during 3D-spheroid formation and invasion through a collagen matrix. Combined, this evidence suggests that the melanoma sphere-culture system induces subpopulations of cells that may more accurately portray the in vivo disease, than the growth as adherent melanoma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is a significant health problem faced by aging men. Currently, diagnostic strategies for the detection of prostate cancer are either unreliable, yielding high numbers of false positive results, or too invasive to be used widely as screening tests. Furthermore, the current therapeutic strategies for the treatment of the disease carry considerable side effects. Although organ confined prostate cancer can be curable, most detectable clinical symptoms occur in advanced disease when primary tumour cells have metastasised to distant sites - usually lymph nodes and bone. Many growth factors and steroids assist the continued growth and maintenance of prostatic tumour cells. Of these mitogens, androgens are important in the development of the normal prostate but are also required to sustain the growth of prostate cancer cells in the early stage of the disease. Not only are androgens required in the early stage of disease, but also many other growth factors and hormones interact to cause uncontrolled proliferation of malignant cells. The early, androgen sensitive phase of disease is followed by an androgen insensitive phase, whereby androgens are no longer required to stimulate the growth of the tumour cells. Growth factors such as transforming growth factor  and  (TGF/), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), insulin-like growth factors (IGFs), Vitamin D and thyroid hormone have been suggested to be important at this stage of disease. Interestingly, some of the kallikrein family of genes, including prostate specific antigen (PSA), the current serum diagnostic marker for prostate cancer, are regulated by androgens and many of the aforementioned growth factors. The kallikrein gene family is a group of serine proteases that are involved in a diverse range of physiological processes: regulation of local blood flow, angiogenesis, tissue invasion and mitogenesis. The earliest members of the kallikrein gene family (KLK1-KLK3) have been strongly associated with general disease states, such as hypertension, inflammation, pancreatitis and renal disease, but are also linked to various cancers. Recently, this family was extended to include 15 genes (KLK1-15). Several newer members of the kallikrein family have been implicated in the carcinogenesis and tumour metastasis of hormone-dependent cancers such as prostate, breast, endometrial and ovarian cancer. The aims of this project were to investigate the expression of the newly identified kallikrein, KLK4, in benign and malignant prostate tissues, and prostate cancer cell lines. This thesis has demonstrated the elevated expression of KLK4 mRNA transcripts in malignant prostate tissue compared to benign prostates. Additionally, expression of the full length KLK4 transcript was detected in the androgen dependent prostate cancer cell line, LNCaP. Based on the above finding, the LNCaP cell line was chosen to assess the potential regulation of full length KLK4 by androgen, thyroid hormone and epidermal growth factor. KLK4 mRNA and protein was found to be up-regulated by androgen and a combination of androgen and thyroid hormone. Thyroid hormone alone produced no significant change in KLK4 mRNA or protein over the control. Epidermal growth factor treatment also resulted in elevated expression levels of KLK4 mRNA and protein. To assess the potential functional role(s) of KLK4/hK4 in processes associated with tumour progression, full length KLK4 was transfected into PC-3 cells - a prostate cancer cell line originally derived from a secondary bone lesion. The KLK4/hK4 over-expressing cells were assessed for their proliferation, migration, invasion and attachment properties. The KLK4 over-expressing clones exhibited a marked change in morphology, indicative of a more aggressive phenotype. The KLK4 clones were irregularly shaped with compromised adhesion to the growth surface. In contrast, the control cell lines (parent PC-3 and empty vector clones) retained a rounded morphology with obvious cell to cell adhesion, as well as significant adhesion to their growth surface. The KLK4 clones exhibited significantly greater attachment to Collagen I and IV than native PC-3s and empty vector controls. Over a 12 hour period, in comparison to the control cells, the KLK4 clones displayed an increase in migration towards PC-3 native conditioned media, a 3 fold increase towards conditioned media from an osteoblastic cell line (Saos-2) and no change in migration towards conditioned media from neonatal foreskin fibroblast cells or 20% foetal bovine serum. Furthermore, the increase in migration exhibited by the KLK4 clones was partially blocked by the serine protease inhibitor, aprotinin. The data presented in this thesis suggests that KLK4/hK4 is important in prostate carcinogenesis due to its over-expression in malignant prostate tissues, its regulation by hormones and growth factors associated with prostate disease and the functional consequences of over-expression of KLK4/hK4 in the PC-3 cell line. These results indicate that KLK4/hK4 may play an important role in tumour invasion and bone metastasis via increased attachment to the bone matrix protein, Collagen I, and enhanced migration due to soluble factors produced by osteoblast cells. This suggestion is further supported by the morphological changes displayed by the KLK4 over-expressing cells. Overall, this data suggests that KLK4/hK4 should be further studied to more fully investigate the potential value of KLK4/hK4 as a diagnostic/prognostic biomarker or in therapeutic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. METHODS: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). RESULTS: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. CONCLUSIONS: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background We have investigated the possibility and feasibility of producing the HPV-11 L1 major capsid protein in transgenic Arabidopsis thaliana ecotype Columbia and Nicotiana tabacum cv. Xanthi as potential sources for an inexpensive subunit vaccine. Results Transformation of plants was only achieved with the HPV-11 L1 gene with the C-terminal nuclear localization signal (NLS-) encoding region removed, and not with the full-length gene. The HPV-11 L1 NLS- gene was stably integrated and inherited through several generations of transgenic plants. Plant-derived HPV-11 L1 protein was capable of assembling into virus-like particles (VLPs), although resulting particles displayed a pleomorphic phenotype. Neutralising monoclonal antibodies binding both surface-linear and conformation-specific epitopes bound the A. thaliana-derived particles and - to a lesser degree - the N. tabacum-derived particles, suggesting that plant-derived and insect cell-derived VLPs displayed similar antigenic properties. Yields of up to 12 μg/g of HPV-11 L1 NLS- protein were harvested from transgenic A. thaliana plants, and 2 μg/g from N. tabacum plants - a significant increase over previous efforts. Immunization of New Zealand white rabbits with ∼50 μg of plant-derived HPV-11 L1 NLS- protein induced an antibody response that predominantly recognized insect cell-produced HPV-11 L1 NLS- and not NLS+ VLPs. Evaluation of the same sera concluded that none of them were able to neutralise pseudovirion in vitro. Conclusion We expressed the wild-type HPV-11 L1 NLS- gene in two different plant species and increased yields of HPV-11 L1 protein by between 500 and 1000-fold compared to previous reports. Inoculation of rabbits with extracts from both plant types resulted in a weak immune response, and antisera neither reacted with native HPV-11 L1 VLPs, nor did they neutralise HPV-11 pseudovirion infectivity. This has important and potentially negative implications for the production of HPV-11 vaccines in plants. © 2007 Kohl et al; licensee BioMed Central Ltd.