962 resultados para IMPLANTED LINBO3
Resumo:
This study investigated the effects of bilateral injections of serotonergic receptor ligands into the lateral parabrachial nucleus (LPBN) on the presser and dipsogenic responses induced by intracerebroventricular (icv) injection of angiotensin II (ANG II). Rats with stainless steel cannulas implanted bilaterally into the LPBN and into the left lateral ventricle were used to study icy ANG II-induced water intake and presser responses. Pretreatment with the serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (1-8 mu g/200 nl) bilaterally injected into the LPBN increased the water intake induced by icv ANG II (50 ng/mu l) administered via the lateral ventricle, but pretreatment with methysergide (4 mu g/200 nl) did not change the presser response produced by icy ANG II. After bilateral injection of either serotonin (5-HT, 5 mu g/200 nl) or the serotonergic 5-HT2a/5-HT2c receptor agonist (+/-)-2,5-dimetoxy-4-iodoamphetamine hydrochloride (DOI; 0.5-10 mu g/200 nl) into the LPBN, the water intake induced by ANG II was significantly reduced. These results are consistent with other observations indicating that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG II treatment and suggest that serotonergic pathways may be involved in this effect.
Resumo:
In this study we investigated the influence of electrolytic lesion or of opioid agonist injections into the lateral hypothalamus (LH) on the dipsogenic, natriuretic, kaliuretic, antidiuretic, presser, and bradycardic effects of cholinergic stimulation of the medial septal area (MSA) in rats. Sham- and LH-lesioned male Holtzman rats received a stainless steel cannula implanted into the LH. Other groups of rats had cannulas implanted simultaneously into the MSA and LH. Carbachol (2 nmol) injection into the MSA induced water intake, presser, and bradycardic responses. LH lesion reduced all of these effects (1-3 and 15-18 days). Previous injection of synthetic opiate agonist, FK-33824 (100 ng), into the LH reduced the water intake, natriuresis, kaliuresis, and presser responses induced by carbachol injected into the MSA. These data show that both electrolytic lesion or injection of an opiate agonist in the LH reduces the fluid-electrolyte and cardiovascular responses to cholinergic activation of the MSA. The involvement of LH with central excitatory and inhibitory mechanisms related to fluid-electrolytic and cardiovascular control is suggested.
Resumo:
Angiotensin II (ANG II) administered centrally produces drinking by acting on subtype 1 ANG II (AT1) receptors, Carbachol, a cholinergic receptor agonist, also induces drinking behavior by a central action. In the present study we determined whether the response to carbachol also involves AT1 receptors. Male Holtzman rats (250-300 g) with stainless steel cannula implanted into the lateral ventricle (LV) were used. Water intake after injection of 0.15 M NaCl (1.0 mu l) into the LV was 0.2 +/- 0.01 ml/h (N = 8). The AT1 receptor antagonist DUP-753 (50 nmol/mu l) injected into the LV reduced water intake induced by ANG II (10 nmol/mu l) from 9.2 +/- 1.4 to 0.4 +/- 0.1 ml/h (N = 8), and water intake induced by carbachol (2 nmol/mu l) from 9.8 +/- 1.4 ml/h to 3.7 +/- 0.8 ml/h (N = 8), These results suggest that AT1 receptors play a role in the drinking behavior observed after central cholinergic stimulation in rats.
Resumo:
We studied the effect of ramipril injected into the third ventricle (3rdV) on the control of water intake induced by injection of noradrenaline into the 3rdV of adult male Holtzman rats (250-300 g) implanted with a chronic stainless steel cannula into the 3rdV. The injection volume was always 1 mu l and was injected over a period of 30-60 sec. Control animals were injected with 0.15 M NaCl. After the injection of isotonic saline (control, 0.15 M NaCl) into the 3rdV, water ingestion was 0.3 +/- 0.1 ml/h. Ramipril (1 mu g/mu l) injected into the 3rdV prior to isotonic saline produced no changes in water ingestion (0.4 +/- 0.2 ml/h). The injection of noradrenaline (40 nmol/mu l) after isotonic saline induced an increase in water intake (3.0 +/- 1.1 ml/h). The prior injection of ramipril decreased this ingestion to 1.8 +/- 0.3 ml/h. These data show that the inhibition of converting enzyme in the brain reduces the water intake induced by catecholaminergic stimulation. We conclude that the brain is able to transform the prodrug ramipril into the active drug ramiprilat.
Resumo:
Granulocyte colony-stimulating factor (G-CSF) regulates granulocyte precursor cell proliferation, neutrophil survival, and activation. Cyclic hematopoiesis, a disease that occurs both in humans and grey collie dogs is characterized by cyclical variations in blood neutrophils. Although the underlying molecular defect is not known, long-term daily administration of recombinant G-CSF eliminates the severe recurrent neutropenia, indicating that expression of G-CSF by gene therapy would be beneficial. As a prelude to preclinical studies in affected collie dogs, we monitored hematopoiesis in rats receiving vascular smooth muscle cells transduced to express G-CSF. Cells transduced with LrGSN, a retrovirus expressing rat G-CSF, were implanted in the carotid artery and control animals received cells transduced with LASN, a retrovirus expressing human adenosine deaminase (ADA). Test animals showed significant increases in neutrophil counts for at least 7 weeks, with mean values of 3,670 +/- 740 cells/mu l in comparison to 1,870 +/- 460 cells/mu l in controls (p < 0.001). Thus, in rats G-CSF gene transfer targeted at vascular smooth muscle cells initiated sustained production of 1,800 neutrophils/mu l, a cell number that would provide clinical benefit to patients. Lymphocytes, red cells and platelets were not different between control and test animals (p > 0.05). These studies indicate that retrovirally transduced vascular smooth muscle cells can provide sustained clinically useful levels of neutrophils in vivo.
Resumo:
A giant anteater (Myrmecophaga tridactyla) was found with closed comminuted fractures on the fight radius and ulna and left humerus he duration of which was unknown. The animal was unable to use either of he thoracic limbs. The fractures were stabilized with 3.5-mm titanium plates and a commercially available mixture of micro lyophilized bovine cortical osseous and bovine BMP (Gen-tech(R), Baumer, Brazil) was implanted into the fractures sites. Postoperative radiographic evaluations were performed every 30 days and after four months. Bone healing was observed in all of he fractures. The animal was able to be reintroduced into its natural habitat. From his case we conclude that despite he low metabolic fate of the giant anteater, which is an inherent characteristic of this species, he treatment of radius, ulna and humerus fractures by means of plates and screws, associated with BMP on the Myrmecophaga tridactyla, was a success.
Resumo:
We investigated the participation of the beta-adrenoceptors of the septal area (SA) in sodium and potassium excretion and urine flow. The alterations in arterial pressure and some renal functions were also investigated. The injection of 2.10(-9) to 16.10(-9)M of isoproterenol, through a cannula permanently implanted into the SA produced a significant dose-dependent decrease in urinary Na+ and K+ excretion and urinary flow. Pretreatment with 16.10(-9) M butoxamine antagonized the effect of 4.10(-9) M isoproterenol but pretreatment with 16.10(-9) M practolol did not abolish the effect of isoproterenol. The beta 2-agonist terbutaline and salbutamol (4.10(-9) M when injected intraseptally also caused a decrease in urine flow and in renal Na+ and K+ excretion. After injection of isoproterenol or salbutamol (4.10(-9) M) into the SA, the arterial pressure, glomerular, filtration rate (GFR) and filtered Nd were reduced while Na+ fractional reabsorption was increased. The results indicate that the beta 2-adrenoceptors of the SA play a role in the decrease of Na+, K+ and urine flow and this effect may be due to a drop in GFR and filtered Na+ and to the rise in tubular Na+ reabsorption.
Resumo:
In the present study, we investigated changes in mesenteric, renal, and hindquarter vascular resistance during the pressor response produced by bilateral carotid occlusion (BCO) in conscious, freely moving normal and denervated (aortic, carotid, or both) rats. BCO was performed using special previously implanted cuffs. In control normal rats, the increase in mean arterial pressure (MAP) during early and late responses (37 +/- 4 and 21 +/- 2 mm Hg, respectively) was related to increased renal (125 +/- 12% and 45 +/- 10%) and mesenteric (38 +/- 13% and 41 +/- 5%) but not hindquarter (14 +/- 4% and 8 +/- 7%) vascular resistance. In aortic-denervated rats, the greater MAP increase in early and late responses (57 +/- 4 and 44 +/- 4 mm Hg, respectively) compared with normal rats was related to a marked increase in hindquarter (137 +/- 26% and 106 +/- 26%) and mesenteric (104 +/- 14% and 66 +/- 9%) vascular resistance. In carotid-denervated rats, MAP increase and change in vascular resistance were similar to those values observed in control rats. Sinoaortic-denervated rats showed a greater MAP increase (34 +/- 4 mm Hg) during late response and a reduced increase in renal vascular resistance (46 +/- 6%) during early response. The present results show that 1) the pressor response to BCO in normal rats is associated with an increase in renal and mesenteric vascular resistance, 2) the aortic baroreceptors buffer the increase in mesenteric and especially hindquarter vascular resistance during BCO, and 3) the reduced pressor response in late response is probably related to a reduced increase in renal vascular resistance during this component compared with the early response.
Resumo:
In the present study, we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, tachycardic, dipsogenic, natriuretic, and kaliuretic responses induced by the injection of the cholinergic agonist carbachol into the ventromedial hypothalamic nucleus (VMH) of rats. Male rats with sham or AV3V lesion and a stainless steel cannula implanted into the VMH were used. Carbachol (2 nmol) injected into the VMH of sham rats produced pressor (32 +/- 4 mmHg). tachycardic (83 +/- 14 bpm), dipsogenic (8.2 +/- 1.1 ml/h). natriuretic (320 +/- 46-mu-Eq/120 min), and kaliuretic (155 +/- 20-mu-Eq/120 min) responses. In AV3V-lesioned rats (2 and 15 days), the pressor (4 +/- 2 and 15 +/- 2 mmHg. respectively), dipsogenic (0.3 +/-0.2 and 1.4 +/- 0.7 ml/h), natriuretic (17 +/- 7 and 99 +/- 21-mu-Eq/120 min), and kaliuretic (76 +/- 14 and 79 +/- 7-mu-Eq/120 min) responses induced by carbachol injection into the VMH were reduced. The tachycardia was also abolished (27 +/- 15 and -23 +/-29 bpm, respectively). These results show that the AV3V region is essential for the pressor, tachycardic, dipsogenic, natriuretic. and kaliuretic responses induced hy cholinergic activation of the VMH in rats.
Resumo:
We studied the effect of the alpha(1)- and alpha(2)-adrenergic receptors of the lateral hypothalamus (LH) on the control of water intake induced by injection of carbachol into the medial septal area (MSA) of adult male Holtzman rats (250-300 g) implanted with chronic stainless steel cannulae into the LH and MSA. The volume of injection was always 1 mu l and was injected over a period of 30-60 s. For control, 0.15 M NaCl was used. Clonidine (20 nmol) but not phenylephrine (160 nmol) injected into the LH inhibited water intake induced by injection of carbachol (2 nmol) into the MSA, from 5.4 +/- 1.2 ml/h to 0.3 +/- 0.1 and 3.0 +/- 0.9 ml/h, respectively (N = 26). When we injected yohimbine (80 nmol) + clonidine (20 nmol) and prazosin (40 nmol) + clonidine (20 nmol) into theLH, water intake induced by injection of carbachol into the MSA was inhibited from 5.4 +/- 1.2 ml/h to 0.8 +/- 0.5 and 0.3 +/- 0.2 ml/h, respectively (N = 19). Water intake induced by carbachol (2 nmol) injected into the MSA was decreased by previous injection of yohimbine (80 nmol) + phenylephrine (160 nmol) and prazosin (40 nmol) + phenylephrine (l60 nmol) from 5.4 +/- 1.2 ml/h to 1.0 +/- 0.7 and 1.8 +/- 0.8 ml/h, respectively (N = 16). The cannula reached both the medial septal area in its medial portion and the lateral hypothalamus. It has been suggested that the different pathways for induction of drinking converge on a final common pathway. Thus, adrenergic stimulation of alpha(2),-adrenoceptors ofLH can influence this final common pathway.
Resumo:
This study investigated the effects of bilateral injections of a serotonin (5-HT) receptor agonist into the lateral parabrachial nucleus (LPBN) on the intake of NaCl and water induced by 24-h water deprivation or by sodium depletion followed by 24 h of sodium deprivation (injection of the diuretic furosemide plus 24 h of sodium-deficient diet). Rats had stainless steel cannulas implanted bilaterally into the LPBN. Bilateral LPBN injections of the serotonergic 5-HT1/2 receptor antagonist methysergide (4 mu g/200 nl at each site) increased hypertonic NaCl intake when tested 24 h after sodium depletion and after 24 h of water deprivation. Water intake also increased after bilateral injections of methysergide into the LPBN. In contrast, the intake of a palatable solution (0.06 M sucrose) under body fluid-replete conditions was not changed after bilateral LPBN methysergide injections. The results show that serotonergic mechanisms in the LPBN modulate water and sodium intake induced by volume depletion and sodium loss. The finding that sucrose intake was not affected by LPBN serotonergic blockade suggests that the effects of the methysergide treatment on the intakes of water and NaCl are not due to a mechanism producing a nonspecific enhancement of all ingestive behaviors.
Resumo:
In this study we investigated: (a) the effects of intracerebroventricular (i.c.v.) injections of moxonidine (an alpha(2)-adrenergic and imidazoline receptor agonist) on the ingestion of water and NaCl induced by 24 h of water deprivation; (b) the effects of i.c.v. injection of moxonidine on central angiotensin II (ANG II)- and carbachol-induced water intake; (c) the effects of the pre-treatment with i.c.v, idazoxan (an alpha(2)-adrenergic and imidazoline receptor antagonist) and RX 821002 (a selective alpha(2)-adrenergic antagonist) on the antidipsogenic action of central moxonidine. Male Holtzman rats had stainless steel cannulas implanted in the lateral cerebral ventricle. Intracerebroventricular injection of moxonidine (5 and 20 nmol/1 mu l) reduced the ingestion of 1.5% NaCl solution (4.1 +/- 1.1 and 2.9 +/- 2.5 ml/2 h, respectively vs. control = 7.4 +/- 2.1 ml/2 h) and water intake (2.0 +/- 0.6 and 0.3 +/- 0.2 ml/h, respectively vs. control = 13.0 +/- 1.4 ml/h) induced by water deprivation, Intracerebroventricular moxonidine (5 nmol/1 mu l) also reduced i.c.v. ANG Ii-induced water intake (2.8 +/- 0.9 vs. control = 7.9 +/- 1.7 ml/1 h) and i.c.v. moxonidine (10 and 20 nmol/1 mu l) reduced i.c.v. carbachol-induced water intake (4.3 +/- 1.7 and 2.1 +/- 0.9, respectively vs. control = 9.2 +/- 1.0 ml/1 h). The pre-treatment with i.c.v. idazoxan (40 to 320 nmol/1 mu l) abolished the inhibitory effect of i.c.v, moxonidine on carbachol-induced water intake. Intracerebroventricular idazoxan (320 nmol/1 mu l) partially reduced the inhibitory effect of moxonidine on water deprivation-induced water intake and produced only a tendency to reduce the antidipsogenic effect of moxonidine on ANG Ii-induced water intake. RX 821002 (80 and 160 nmol/1 mu l) completely abolished the antidipsogenic action of moxonidine on ANG Ii-induced water intake. The results show that central injections c: moxonidine strongly inhibit water and NaCl ingestion. They also suggest the involvement of central alpha(2)-adrenergic receptors in the antidipsogenic action of moxonidine. (C) 1999 Elsevier B.V.
Resumo:
This study investigated the roles of serotonin (5-HT) receptors in the lateral parabrachial nucleus (LPBN), and brain angiotensin type 1 (AT(1)) receptors in the intake of 0.3 M NaCl and water induced by angiotensin II (ANG II). Rats were implanted with stainless steel cannulas for injections into tho subfornical organ (SFO) and into the LPBN. Bilateral LPBN pretreatment with the nonselective serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl) markedly enhanced 0.3 M NaCl intake induced by injections of ANG II (20 ng/200 nl) into the SFO. Pretreatment of the SFO with the AT(1) receptor antagonist losartan (1 mu g/200 nl) blocked the intake of 0.3 M NaCl induced by ANG II in combination with LPBN methysergide injections. These results suggest that serotonergic mechanisms associated with the LPBN inhibit the expression of salt appetite induced by ANG II injections into Ihs SFO. In addition, the results indicate that the enhanced NaCl intake generated by central administration of ANG II in the presence of LPBN 5-HT blockade is mediated bg brain ATI receptors.
Resumo:
Amorphous LiNbO3 thin films processed by polymeric precursor method exhibited efficient luminescence at room temperature. The films were deposited on silicon substrates and treated at 200degreesC for different times. The photoluminescence emission yield decreases with the increase of the treatment time and disappears for crystalline films. A theoretical-experimental study was performed on amorphous and crystalline materials to understand the influence of the defects on the photoluminescence properties. The theoretical band gap obtained by the difference of energy between the HOMO and LUMO levels is larger for crystalline structure when compared with amorphous material. This result, which is in agreement with experimental band gaps obtained from optical measurements, revealed the emergence of new electronic levels for the amorphous material, which are localized in the wide band gap of the crystalline structure. These new electronic levels may explain the photoluminescence observed at room temperature for LiNbO3 amorphous films.
Resumo:
In recent years, there has been a great interest in the development of biomaterials that could be used in the repair of bone defects. Collagen matrix (CM) has the advantage that it can be modified chemically to improve its mechanical properties. The aim of the present study was to evaluate the effect of three-dimensional membranes of native or anionic (submitted to alkaline treatment for 48 or 96 h) collagen matrix on the consolidation of osteoporosis bone fractures resulting from the gonadal hormone alterations caused by ovariectomy in rats subjected to hormone replacement therapy. The animals received the implants 4 months after ovariectomy and were sacrificed 8 weeks after implantation of the membranes into 4-mm wide bone defects created in the distal third of the femur with a surgical bur. Macroscopic analysis revealed the absence of pathological alterations in the implanted areas, suggesting that the material was biocompatible. Microscopic analysis showed a lower amount of bone ingrowth in the areas receiving the native membrane compared to the bone defects filled with the anionic membranes. In ovariectomized animals receiving anionic membranes, a delay in bone regeneration was observed mainly in animals not subjected to hormone replacement therapy. We conclude that anionic membranes treated with alkaline solution for 48 and 96 h presented better results in terms of bone ingrowth.