988 resultados para Hyperbolic conservation laws
Resumo:
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.
Resumo:
1. Freshwater unionoids are one of the most threatened animal groups worldwide and the freshwater pearl mussel Margaritifera margaritifera is currently listed as critically endangered in Europe. The ‘EC Habitats & Species Directive’ requires that EU member states monitor the distribution and abundance of this species and report regularly on its conservation status.
2. The pearl mussel meta-population in Northern Ireland was surveyed to assess temporal population trends in Special Areas of Conservation (SACs) and mussel reproduction throughout its range.
3. Mussels occurred in six rivers and numbers within three SAC designated sites remained stable between 2004-07 and 2011. The discovery of >8,000 previously unknown individuals in the Owenreagh River contributed to an overall increase (+56.8%) in the total known population. All populations actively reproduced during 2010 with approximately half of all individuals gravid. Moreover, suitable salmonid hosts occurred at all sites with 10.7% of salmon and 22.8% of trout carrying encysted glochidia. Populations were composed entirely of aged individuals with little evidence of recent recruitment.
4. We infer that the break in the life cycle must occur during the juvenile stage when glochidia metamorphose and settle into the interstitial spaces within the substrate. Water quality parameters, most notably levels of suspended solids, exceeded the recommended maximum thresholds in all rivers.
5. We posit that the deposition of silt may be the main cause of juvenile mortality contributing to a lack of recruitment. Consequently, all populations were judged to be in ‘unfavourable’ conservation status. Catchment-level management plans are urgently needed to reduce siltation with the aim of improving recruitment. Our results have implications for the success of ex-situ conservation programmes; specifically, the size at which captive bred juveniles are released into the wild. Further research is required to assess the vulnerabilities of early life stages of M. margaritifera to siltation.
Resumo:
Selection of sites for successful restoration of impacted shellfish populations depends on understanding the dispersion capability and habitat requirements of the species involved. In Strangford Lough, Northern Ireland, the horse mussel (Modiolus modiolus) biogenic reefs cover only a fraction of their historical range with the remaining reefs badly damaged and requiring restoration. Previous experimental trials suggest that translocation of horse mussels accelerates reef recovery and has therefore been proposed as a suitable restoration technique. We used a series of coupled hydrodynamic and particle dispersal models to assess larval dispersion from remnant and translocated populations to identify suitable areas for adult live M. modiolus translocation in Strangford Lough, Northern Ireland. A maximum entropy model (MAXENT) was used to identify if dispersing larvae could reach habitat suitable for adult M. modiolus. From these we predicted if translocated mussels will reseed themselves or be able to act as larval sources for nearby reefs. The dispersal models showed that the remnant M. modiolus populations are largely self-recruiting with little connectivity between them. The majority of larvae settled near the sources and movement was largely dependent on the tides and not influenced by wind or waves. Higher reef elevation resulted in larvae being able to disperse further away from the release point. However, larval numbers away from the source population are likely to be too low for successful recruitment. There was also little connectivity between the Irish Sea and Strangford Lough as any larvae entering the Lough remained predominantly in the Strangford Narrows. The areas covered by these self-seeding populations are suitable for M. modiolus translocation according to the MAXENT model. As a result of this work and in conjunction with other field work we propose a combination of total protection of all remaining larval sources and small scale translocations onto suitable substrata in each of the identified self-recruiting areas.
Resumo:
Populations of many freshwater species are becoming increasingly threatened as a result of a wide range of anthropogenically mediated factors. In the present study, we wanted to assess levels and patterns of genetic diversity in Ireland's sole population of the River water crowfoot (Ranunculus fluitans), which is restricted to a 12 km stretch of a single river, to assist the formation of conservation strategies. Analysis using amplified fragment length polymorphism (AFLP) indicated comparable levels of genetic diversity to those exhibited by a more extensive population of the species in England, and revealed no evidence of clonal reproduction. Allele-specific PCR analysis of five nuclear single nucleotide polymorphisms (SNPs) indicated no evidence of hybridization with its more abundant congener Ranunculus penicillatus, despite previous anecdotal reports of the occurrence of hybrids. Although the population currently exhibits healthy levels of genetic diversity and is not at risk of genetic assimilation via hybridization with R. penicillatus, it still remains vulnerable to other factors such as stochastic events and invasive species. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Global development has, in recent years, been shaped by the rise of transnational capital. This has implications for the quality and effectiveness of those national laws, regulations and policies in place to monitor transnational capital, ensure that multi national organisations assume responsibility and hold them accountable should they fail to do so. In balancing these objectives, contrasting issues come to the fore, such as the fear of capital flight; an issue especially profound in small open economies where the balance may tip in the favour of retaining, as opposed to regulating, foreign capital.
This paper can be considered in three parts. First, the paper addresses the shift in global leadership from national governments to multinational corporations (with particular reference to the rise of the Transnational Capitalist Class). This shift will incorporate the connotations of the Third Way. In considering this ideology, it will propose the Third Way as a transition phase to a stage when government is more the “third wheel” than an equal partner in governance structures. Second, the implications of the changing nature of governance on the capacity of nation states to develop effective laws, regulations and policies is discussed which leads on to the third aspect of the paper which identifies the challenges for governments, business and society in reimagining the governance structure pertaining to law, regulation and policy and the need to reconsider existing structures in light of global shifts in power structures.
A new leadership structure, both within the national and international governance system has far reaching implications. Boundary constraints no longer an issue, the potential for equality and global democracy is huge. Instead, a post recessionary world faces new governance challenges in the shape of; legitimacy; accountability and responsibility. Capitalism has invaded government and the primary challenge will be in avoiding the same issues that have dogged our financial markets for the last number of years. The challenge then to laws, regulations and public policy is huge, especially considering that the governments regulating are smaller than those dictating agenda on a global level
Resumo:
The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Global amphibian declines are a major element of the current biodiversity crisis. Monitoring changes in the distribution and abundance of target species is a basic component in conservation decision making and requires robust and repeatable sampling. For EU member states, surveillance of designated species, including the common frog Rana temporaria, is a formal requirement of the 'EC Habitats & Species Directive'. We deployed established methods for estimating frog population density at local water bodies and extrapolated these to the national and ecoregion scale. Spawn occurred at 49.4% of water bodies and 70.1% of independent 500-m survey squares. Using spawn mat area, we estimated the number of adult breeding females and subsequently the total population assuming a sex ratio of 1:1. A negative binomial model suggested that mean frog density was 23.5 frogsha [95% confidence interval (CI) 14.9-44.0] equating to 196M frogs (95%CI 124M-367M) throughout Ireland. A total of 86% of frogs bred in drainage ditches, which were a notably common feature of the landscape. The recorded distribution of the species did not change significantly between the last Article 17 reporting period (1993-2006) and the current period (2007-2011) throughout the Republic of Ireland. Recording effort was markedly lower in Northern Ireland, which led to an apparent decline in the recorded distribution. We highlight the need to coordinate biological surveys between adjacent political jurisdictions that share a common ecoregion to avoid apparent disparities in the quality of distributional information. Power analysis suggested that a reduced sample of 40-50 survey squares is sufficient to detect a 30% decline (consistent with the International Union for Conservation of Nature Category of 'Vulnerable') at 80% power providing guidance for minimizing future survey effort. Our results provin assessments for R. temporaria and other clump-spawning amphibians. 2013 The Zoological Society of London.