776 resultados para Hydrogel nanocomposites
Resumo:
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The precipitation patterns and characteristics of calcium phosphate (CaP) phases deposited on HEMA-based hydrogels upon incubation in simulated body fluid (SBF-2) containing a protein (human serum albumin) have been investigated in relation to the calcification in an organic-free medium (SBF-1) and to that occurring after subcutaneous implantation in rats. In SBF-2, the deposits occurred exclusively as a peripheral layer on the surface of the hydrogels and consisted mainly of precipitated hydroxyapatite, a species deficient in calcium and hydroxyl ions, similarly to the deposits formed on the implanted hydrogels, where the deposited layer was thicker. In SBF-1, the deposits were mainly of brushite type. There was no evidence that albumin penetrated the interstices of hydrogels. As the X-ray diffraction patterns of the CaP deposits generated in SBF-2 showed a similar nature with those formed on the implanted hydrogel, it was concluded that the calcification in SBF-2 can mimic to a reliable extent the calcification process taking place in a biological environment.
Resumo:
Polymer processing experiments have been conducted with a twin screw extruder. Different formulations of starch-based nanocomposites are being tested in a pilot scale film blowing tower. The physical properties of different starch-based films have been examined with thermal and mechanical analysis and X-ray diffraction. The results show that the addition of organoclay significantly improves both the processing and tensile properties over the original starch blends. The mechanical and thermal properties of the blends are also sensitive to the scale the clay particles are dispersed.
Resumo:
Purpose: The aim of this study was to compare a developmental optical coherence tomography (OCT) based contact lens inspection instrument to a widely used geometric inspection instrument (Optimec JCF), to establish the capability of a market focused OCT system. Methods: Measurements of 27 soft spherical contact lenses were made using the Optimec JCF and a new OCT based instrument, the Optimec is830. Twelve of the lenses analysed were specially commissioned from a traditional hydrogel (Contamac GM Advance 49%) and 12 from a silicone hydrogel (Contamac Definitive 65), each set with a range of back optic zone radius (BOZR) and centre thickness (CT) values. Three commercial lenses were also measured; CooperVision MyDay (Stenfilcon A) in −10D, −3D and +6D powers. Two measurements of BOZR, CT and total diameter were made for each lens in temperature controlled saline on both instruments. Results: The results showed that the is830 and JCF measurements were comparable, but that the is830 had a better repeatability coefficient for BOZR (0.065 mm compared to 0.151 mm) and CT (0.008 mm compared to 0.027 mm). Both instruments had similar results for total diameter (0.041 mm compared to 0.044 mm). Conclusions: The OCT based instrument assessed in this study is able to match and improve on the JCF instrument for the measurement of total diameter, back optic zone radius and centre thickness for soft contact lenses in temperature controlled saline.
Resumo:
Purpose: Meibomian-derived lipid secretions are well characterised but their subsequent fate in the ocular environment is less well understood. Phospholipids are thought to facilitate the interface between aqueous and lipid layers of the tear film and to be involved in ocular lubrication processes. We have extended our previous studies on phospholipid levels in the tear film to encompass the fate of polar and non-polar lipids in progressive accumulation and aging processes on both conventional and silicone-modified hydrogel lenses. This is an important aspect of the developing understanding of the role of lipids in the clinical performance of silicone hydrogels. Method: Several techniques were used to identify lipids in the tear film. Mass-spectrometric methods included Agilent 1100-based liquid chromatography coupled to mass spectrometry (LCMS) and Perkin Elmer gas chromatography mass spectrometry (GCMS). Thin layer chromatography (TLC) was used for separation of lipids on the basis of increasing solvent polarity. Routine assay of lipid extractions from patient-worn lenses was carried out using a Hewlett Packard 1090 liquid chromatograph coupled to both uv and Agilent 1100 fluorescence detection. A range of histological together with optical, and electron microscope techniques was used in deposit analysis. Results: Progressive lipid uptake was assessed in various ways, including: composition changes with wear time, differential lipid penetrate into the lens matrix and, particularly, the extent to which lipids become unextractable as a function of wear time. Solvent-based separation and HPLC gave consistent results indicating that the polarity of lipid classes decreased as follows: phospholipids/fatty acids > triglycerides > cholesterol/cholesteryl esters. Tear lipids were found to show autofluorescence—which underpinned the value of fluorescence microscopy and fluorescence detection coupled with HPLC separation. The most fluorescent lipids were found to be cholesteryl esters; histological techniques coupled with fluorescence microscopy indicated that white spots (’’jelly bumps’’) formed on silicone hydrogel lenses contain a high proportion of cholesteryl esters. Lipid profiles averaged for 30 symptomatic and 30 asymptomatic contact lens wearers were compiled. Peak classes were split into: cholesterol (C), cholesteryl esters (CE), glycerides (G), polar fatty acids/phospholipids (PL). The lipid ratio for ymptomatic/symptomatic was 0.6 ± 0.1 for all classes except one—the cholesterol ratio was 0.2 ± 0.05. Significantly the PL ratio was no different from that of any other class except cholesterol. Chromatography indicated that: lipid polarity decreased with depth of penetration and that lipid extractability decreased with wear time. Conclusions: Meibomian lipid composition differs from that in the tear film and on worn lenses. Although the same broad lipid classes were obtained by extraction from all lenses and all patients studied, quantities vary with wear and material. Lipid extractability diminishes with wear time regardless of the use of cleaning regimes. Dry eye symptoms in contact lens wear are frequently linked to lipid layer behaviour but seem to relate more to total lipid than to specific composition. Understanding the detail of lipid related processes is an important element of improving the clinical performance of materials and care solutions.
Resumo:
The work described in this thesis is concerned with mechanisms of contact lens lubrication. There are three major driving forces in contact lens design and development; cost, convenience, and comfort. Lubrication, as reflected in the coefficient of friction, is becoming recognised as one of the major factors affecting the comfort of the current generation of contact lenses, which have benefited from several decades of design and production improvements. This work started with the study of the in-eye release of soluble macromolecules from a contact lens matrix. The vehicle for the study was the family of CIBA Vision Focus® DAILIES® daily disposable contact lenses which is based on polyvinyl alcohol (PVA). The effective release of linear soluble PVA from DAILIES on the surface of the lens was shown to be beneficial in terms of patient comfort. There was a need to develop a novel characterisation technique in order to study these effects at surfaces; this led to the study of a novel tribological technique, which allowed the friction coefficients of different types of contact lenses to be measured reproducibly at genuinely low values. The tribometer needed the ability to accommodate the following features: (a) an approximation to eye lid load, (b) both new and ex-vivo lenses, (c) variations in substrate, (d) different ocular lubricants (including tears). The tribometer and measuring technique developed in this way was used to examine the surface friction and lubrication mechanisms of two different types of contact lenses: daily disposables and silicone hydrogels. The results from the tribometer in terms of both mean friction coefficient and the friction profiles obtained allowed various mechanisms used for surface enhancement now seen in the daily disposable contact lens sector to be evaluated. The three major methods used are: release of soluble macromolecules (such as PVA) from the lens matrix, irreversible surface binding of a macromolecule (such as polyvinyl pyrrolidone) by charge transfer and the simple polymer adsorption (e.g. Pluoronic) at the lens surface. The tribological technique was also used to examine the trends in the development of silicone hydrogel contact lenses. The focus of the principles in the design of silicone hydrogels has now shifted from oxygen permeability, to the improvement of surface properties. Presently, tribological studies reflect the most effective in vitro method of surface evaluation in relation to the in-eye comfort.
Resumo:
The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20 – 500 nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, while maintaining monodispersity, is desirable. Here, while calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10 mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated.
Resumo:
Purpose: Most published surface wettability data are based on hydrated materials and are dominated by the air-water interface. Water soluble species with hydrophobic domains (such as surfactants) interact directly with the hydrophobic domains in the lens polymer. Characterisation of relative polar and non-polar fractions of the dehydrated material provides an additional approach to surface analysis. Method: Probe liquids (water and diiodomethane) were used to characterise polar and dispersive components of surface energies of dehydrated lenses using the method of Owens and Wendt. A range of conventional and silicone hydrogel soft lenses was studied. The polar fraction (i.e. polar/total) of surface energy was used as a basis for the study of the structural effects that influence surfactant persistence on the lens surface. Results: When plotted against water content of the hydrated lens, polar fraction of surface energy (PFSE) values of the dehydrated lenses fell into two rectilinear bands. One of these bands covered PFSE values ranging from 0.4 to 0.8 and contained only conventional hydrogels, with two notable additions: the plasma coated silicone hydrogels lotrafilcon A and B. The second band covered PFSE values ranging from 0.04 to 0.28 and contained only silicone hydrogels. Significantly, the silicone hydrogel lenses with lowest PFSE values (p<0.15) are found to be prone to lipid deposition duringwear. Additionally, more hydrophobic surfactants were found to be more persistent on lenses with lower PFSE values. Conclusions: Measurement of polar fraction of surface energy provides an importantmechanistic insight into surface interactions of silicone hydrogels.
Resumo:
This thesis is concerned with demonstrating how the visual representation of the sequence distribution of individual monomer units, of a polymer, that would be observed upon polymerisation, may be utilised in designing and synthesizing polymers with relatively low cell adhesion characteristics, The initial part of this thesis is concerned with demonstrating the use of a computer simulation technique, in illustrating the sequence distribution that would be observed upon the polymerisation of a set of monomers. The power of the computer simulation technique has been demonstrated through the simulation of the sequence distributions of some generic contact lens materials. These generic contact lens materials were chosen simply because in the field of biomaterials their compositions are amongst the most systematically regulated and they present a wide range of compositions. The validity of the computer simulation technique has been assessed through the synthesis and analysis of linear free-radical polymers at different conversions. Two main parameters were examined, that of composition and the number-average sequence lengths of individual monomer units, at various conversions. The polymers were synthesized through the solution polymerisation process. The monomer composition was determined by elemental analysis and 13C nuclear magnetic analysis (NMR). Number-average sequence lengths were determined exclusively through 13C NMR. Although the computer simulation technique provides a visual representation of the monomer sequence distribution up to 100% conversion, these assessments were made on linear polymers at a reasonably high conversion (above 50%) but below 100% conversion of ease for analysis. The analyses proved that the computer simulation technique was reasonably accurate in predicting the sequence distribution of monomer units, upon polymerisation, in the polymer.An approach has been presented which allows one to manipulate the use of monomers, with their reactivity ratios, thereby enabling us to design polymers with controlled sequence distributions.Hydrogel membranes, with relatively controlled sequence distributions and polymerised to 100% conversion, were synthesized to represent prospective biomaterials. Cell adhesion studies were used as a biological probe to investigate the susceptibility of the surface of these membranes to cell adhesion. This was necessary in order to assess the surface biocompatibility or biotolerance of these prospective biomaterials.
Resumo:
The objective of this thesis is to report the behaviour of mammalian cells with biocompatible synthetic polymers with potential for applications to the human body. Composite hydrogel materials were tested as possible keratoprosthetic devices. It was found that surface topography is an important consideration, pores, channels and fibres exposed on the surface of the hydrogels tested can have significant effects on the extent of cell adheson and proliferation. It is recommended that the core component is fabricated out of one of the following to provide a non cell adhesive base; A8, A11, A13, A22, A23. The haptic periphery fabricated out of one of the following would provide a cell adhesive composite; A16, A30, A33, A37, A38, A42, A43, A44. The presence of vitronectin in the ocular tissue appears to lead to higher cell adhesion to the posterior surface of a contact lens when compared to the anterior surface. Group IV contact lenses adhere more cells than Group II contact lenses - this may indicate that more protein (including vitronectin) is able to adhere to the contact lens due to the Group IV contact lenses high water content and ionic hydrogel matrix. Artificial lung surfactant analogues were found to be non cytotoxic but also decreased cell proliferation when tested at higher concentrations. Poly(lysine ethyl ester adipamide) [PLETESA] had the most favourable response on cell proliferation and commercial styrene/maleic anhydride (pMA/STY sp2) the most pronounced inhibitory response. The mode of action that decreases cell proliferation appears to be through membrane destabilization. Tissue culture well plates coated with PLETESA allowed cells to adhere in a concentration dependent manner, multilaminar liposomes possibly of PLETESA were observed in solution in PLETESA coated wells. Polyhydroxybutryate (PHB) and polyhydroxyvalerate (PHV) blends that contained hydroxyapatite were found to be the most cell adhesive material of those materials tested. The blends that were most susceptible to degradation adhered the most cells in initial stages of degradation. The initial slight increase in cell adhesion may be due to the increased rugosity of the material. As the degradation continued the number of cells adhering to the samples decreased, this may indicate that the polarity was inhibitory to cell adhesion during the later stages of degradation.
Resumo:
This study is concerned with the analysis of tear proteins, paying particular attention to the state of the tears (e.g. non-stimulated, reflex, closed), created during sampling, and to assess their interactions with hydrogel contact lenses. The work has involved the use of a variety of biochemical and immunological analytical techniques for the measurement of proteins, (a), in tears, (b), on the contact lens, and (c), in the eluate of extracted lenses. Although a diverse range of tear components may contribute to contact lens spoilation, proteins were of particular interest in this study because of their theoretical potential for producing immunological reactions. Although normal host proteins in their natural state are generally not treated as dangerous or non-self, those which undergo denaturation or suffer a conformational change may provoke an excessive and unnecessary immune response. A novel on-lens cell based assay has been developed and exploited in order to study the role of the ubiquitous cell adhesion glycoprotein, vitronectin, in tears and contact lens wear under various parameters. Vitronectin, whose levels are known to increase in the closed eye environment and shown here to increase during contact lens wear, is an important immunoregulatory protein and may be a prominent marker of inflammatory activity. Immunodiffusion assays were developed and optimised for use in tear analysis, and in a series of subsequent studies used for example in the measurement of albumin, lactoferrin, IgA and IgG. The immunodiffusion assays were then applied in the estimation of the closed eye environment; an environment which has been described as sustaining a state of sub-clinical inflammation. The role and presence of a lesser understood and investigated protein, kininogen, was also estimated, in particular, in relation to contact lens wear. Difficulties arise when attempting to extract proteins from the contact lens in order to examine the individual nature of the proteins involved. These problems were partly alleviated with the use of the on-lens cell assay and a UV spectrophotometry assay, which can analyse the lens surface and bulk respectively, the latter yielding only total protein values. Various lens extraction methods were investigated to remove protein from the lens and the most efficient was employed in the analysis of lens extracts. Counter immunoelectrophoresis, an immunodiffusion assay, was then applied to the analysis of albumin, lactoferrin, IgA and IgG in the resultant eluates.