995 resultados para Hump BARIA combustion rate
Resumo:
We investigate the plastic deformation and constitutive behaviour of bulk metallic glasses (BMGs). A dimensionless Deborah number De(ID) = t(r)/t(i) is proposed to characterize the rate effect in BMGs, where t(r) is the structural relaxing characteristic time of BMGs under shear load, t(i) is the macroscopic imposed characteristic time of applied stress or the characteristic time of macroscopic deformation. The results demonstrate that the modified free volume model can characterize the strain rate effect in BMGs effectively.
Resumo:
The present work focused on improving the engine performance with different fuel equivalence ratios and fuel injections. A scramjet model with strut/cavity integrated configurations was tested under Mach 5.8 flows. The results showed that the strut may sreve as an effective tool in a kerosene-fueled scramjet. The integration of strut/cavities also had great effect on stablizing the combustion in a wide range of fuel equivalence ratio. The one-sdimensional analysis method was used to analyze the main characteristics of the model. The two-stage fuel injection should have better performance in increasing the chemical reaction rate in the first cavity region.
Resumo:
The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2 pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.
Resumo:
Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.
Resumo:
Supersonic combustion of thermally cracked kerosene was experimentally investigated in two model supersonic combustors with different entry cross-section areas. Effects of entry static pressure, entry Mach number, combustor entry geometry, and injection scheme on combustor performance were systematically investigated and discussed based on the measured static pressure distribution and specific thrust increment due to combustion. In addition, the methodology for characterizing flow rate and composition of cracked kerosene was detailed. Using a pulsed Schlieren system, the interaction of supercritical and cracked kerosene jet plumes with a Mach 2.5 crossflow was also visualized at different injection temperatures. The present experimental results suggest that the use of a higher combustor entry Mach number as well as a larger combustor duct height would suppress the boundary layer separation near the combustor entrance and avoid the problem of inlet un- start.
Resumo:
Previous experiments on nanocrystalline Ni were conducted under quasistatic strain rates (similar to 3x10(-3)/s), which are much lower than that used in typical molecular dynamics simulations (>3x10(7)/s), thus making direct comparison of modeling and experiments very difficult. In this study, the split Hopkinson bar tests revealed that nanocrystalline Ni prefers twinning to extended partials, especially under higher strain rates (10(3)/s). These observations contradict some reported molecular dynamics simulation results, where only extended partials, but no twins, were observed. The accuracy of the generalized planar fault energies is only partially responsible, but cannot fully account for such a difference. (C) 2007 American Institute of Physics.