968 resultados para High-range water reducer
Resumo:
The late Variscan (275-278 Ma) Pribram uranium deposit is one of the largest known accumulations of uraniferous bitumens in hydrothermal veins. The deposit extends along the northwestern boundary of the Central Bohemian pluton (345-335 Ma) with low-grade metamorphosed Late Proterozoic and unmetamorphosed Cambrian rocks. From a net uranium production of 41,742 metric tons (t), more than 6,000 t were extracted from bitumen-uraninite ores during 43 years of exploration and mining. Three morphological varieties of solid bitumen are recognized: globular, asphaltlike, and cokelike. While the globular bitumen is uranium free, the other two types are uraniferous. The amount of bitumen in ore veins gradually decreases toward the contact with the plutonic body and increases with depth. Two types of bitumen microtextures are recognized using high-resolution transmission electron microscopy: amorphous and microporous, the former being less common in uraniferous samples. A lower Raman peak area ratio (1,360/1,575 cm(-1)) in mineralized bitumens (0.9) compared with uranium-free samples (2.0) indicates a lower degree of microtextural organization in the latter The H/C and O/C atomic ratios in uranium-free bitumens (0.9-1.1 and 0.09, respectively) are higher than those in mineralized samples (H/C = 0.3-0.8, O/C = 0.03-0.09). The chloroform extractable matter yield is Very low in uranium-free bitumens (0.30-0.35% of the total organic carbon,TOC) and decreases with uranium content increase. The extracted solid uraniferous bitumen infrared spectra show depletion in aliphatic CH2 and CH3 groups compared to uranium-free samples. The concentration of oxygen-bearing functional groups relative to aromatic bonds in the IR spectra of uranium-free and mineralized bitumen, however, do not differ significantly. C-13 NMR confirmed than the aromaticity of a uraniferous sample is higher (F-ar = 0.61) than in the uranium-free bitumen (F-ar = 0.51). Pyrolysates from uraniferous and nonuraniferous bitumens do not differ significantly, being predominantly cresol, alkylphenols, alkylbenzenes, and alkylnaphthalenes. The liquid pyrolysate yield decreases significantly with increasing uranium content. The delta(13)C Values of bulk uranium-free bitumens and low-grade uraniferous, asphaltlike bitumens range from -43.6 to 52.3 per mil. High-grade, cokelike, uraniferous bitumens are more C-13 depleted (54.5 to -58.4 parts per thousand). In contrast to the very light isotopic ratios of the high-grade uraniferous cokelike bitumen bulk carbon, the individual n-alkanes and isoprenoids (pristane and phytane) extracted from the same sample are significantly C-13 enriched. The isotopic composition of the C13-24 n-alkanes extracted from the high-grade uraniferous sample (delta(13)C = -28.0 to 32.6 parts per thousand) are heavier compared with the same compounds in a uranium-free sample (delta(13)C = 31.9 to 33.8 parts per thousand). It is proposed that the bitumen source was the isotopically light (delta(13)C = 35.8 to 30.2 parts per thousand) organic matter of the Upper Proterozoic host rocks that were pyrolyzed during intrusion of the Central Bohemian pluton. The C-13- depleted pyrolysates were mobilized from the innermost part of the contact-metamorphic aureole, accumulated in structural traps in less thermally influenced parts of the sedimentary complex and were later extracted by hydrothermal fluids. Bitumens at the Pribram deposit are younger than the main part of the uranium mineralization and were formed through water-washing and radiation-induced polymerization of both the gaseous and liquid pyrolysates. Direct evidence for pyrolysate reduction of uranium in the hydrothermal system is difficult to obtain as the chemical composition of the original organic fluid phase was modified during water-washing and radiolytic alteration. However, indirect evidence-e.g., higher O/C atomic ratios in uranium-free bitumens (0.1) relative to the Upper Proterozoic source rocks (0.02-0.05), isotopically very light carbon in associated whewellite (delta(13)C = 31.7 to -28.4 parts per thousand), and the striking absence of bitumens in the pre-uranium, hematite stage of the mineralization-indicates that oxidation of organic fluids may have contributed to lowering of aO(2) and uraninite precipitation.
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
Charge transfer properties of DNA depend strongly on the π stack conformation. In the present paper, we identify conformations of homogeneous poly-{G}-poly-{C} stacks that should exhibit high charge mobility. Two different computational approaches were applied. First, we calculated the electronic coupling squared, V2, between adjacent base pairs for all 1 ps snapshots extracted from 15 ns molecular dynamics trajectory of the duplex G15. The average value of the coupling squared 〈 V2 〉 is found to be 0.0065 eV2. Then we analyze the base-pair and step parameters of the configurations in which V2 is at least an order of magnitude larger than 〈 V2 〉. To obtain more consistent data, ∼65 000 configurations of the (G:C)2 stack were built using systematic screening of the step parameters shift, slide, and twist. We show that undertwisted structures (twist<20°) are of special interest, because the π stack conformations with strong electronic couplings are found for a wide range of slide and shift. Although effective hole transfer can also occur in configurations with twist=30° and 35°, large mutual displacements of neighboring base pairs are required for that. Overtwisted conformation (twist38°) seems to be of limited interest in the context of effective hole transfer. The results may be helpful in the search for DNA based elements for nanoelectronics
Resumo:
High-dose cefepime therapy is recommended for febrile neutropenia. Safety issues have been raised in a recent meta-analysis reporting an increased risk of mortality during cefepime therapy. Cefepime-related neurological toxicity has been associated with overdosing due to severe renal dysfunction. This study aimed to investigate the association between cefepime plasma concentrations and neurological toxicity in febrile neutropenic patients. Cefepime trough concentrations (by high-performance liquid chromatography) were retrospectively analyzed for 30 adult febrile neutropenic patients receiving the recommended high-dose regimen (6 g/day for a glomerular filtration rate [GFR] of >50 ml/min). The dose adjustment to renal function was evaluated by the ratio of the cefepime daily dose per 100 ml/min of glomerular filtration. The association between cefepime plasma concentrations and neurological toxicity was assessed on the basis of consistent neurological symptoms and/or signs (by NCI criteria). The median cefepime concentration was 8.7 mg/liter (range, 2.1 to 38 mg/liter) at a median of 4 days (range, 2 to 15 days) after the start of therapy. Neurological toxicity (altered mental status, hallucinations, or myoclonia) was attributed to cefepime in 6/30 (20%) patients (median GFR, 45 ml/min; range, 41 to 65 ml/min) receiving a median dose of 13.2 g/day per 100 ml/min GFR (range, 9.2 to 14.3 g/day per 100 ml/min GFR). Cefepime discontinuation resulted in complete neurological recovery for five patients and improvement for one patient. A multivariate logistic regression model confirmed high cefepime concentrations as an independent predictor of neurological toxicity, with a 50% probability threshold at ≥22 mg/liter (P = 0.05). High cefepime plasma concentrations are associated with neurological toxicity in febrile neutropenic patients with mild renal dysfunction. Careful adherence to normalized dosing per 100 ml/min GFR is crucial. Monitoring of plasma concentrations may contribute to preventing neurological toxicity of high-dose therapy for this life-threatening condition.
Resumo:
A selective and sensitive method was developed for the simultaneous quantification of seven typical antipsychotic drugs (cis-chlorprothixene, flupentixol, haloperidol, levomepromazine, pipamperone, promazine and zuclopenthixol) in human plasma. Ultra-high performance liquid chromatography (UHPLC) was used for complete separation of the compounds in less than 4.5min on an Acquity UPLC BEH C18 column (2.1mm×50mm; 1.7μm), with a gradient elution of ammonium formate buffer pH 4.0 and acetonitrile at a flow rate of 400μl/min. Detection was performed on a tandem quadrupole mass spectrometer (MS/MS) equipped with an electrospray ionization interface. A simple protein precipitation procedure with acetonitrile was used for sample preparation. Thanks to the use of stable isotope-labeled internal standards for all analytes, internal standard-normalized matrix effects were in the range of 92-108%. The method was fully validated to cover large concentration ranges of 0.2-90ng/ml for haloperidol, 0.5-90ng/ml for flupentixol, 1-450ng/ml for levomepromazine, promazine and zuclopenthixol and 2-900ng/ml for cis-chlorprothixene and pipamperone. Trueness (89.1-114.8%), repeatability (1.8-9.9%), intermediate precision (1.9-16.3%) and accuracy profiles (<30%) were in accordance with the latest international recommendations. The method was successfully used in our laboratory for routine quantification of more than 500 patient plasma samples for therapeutic drug monitoring. To the best of our knowledge, this is the first UHPLC-MS/MS method for the quantification of the studied drugs with a sample preparation based on protein precipitation.
Resumo:
1. Severe environmental conditions filter community species compositions, forming clines of functional diversity along environmental gradients. Here, the changes in functional diversity in ant assemblages with severe environmental conditions in the Swiss Alps were investigated. 2. Eight sites were sampled along an elevation gradient (1800-2550 m). The variation in functional diversity was analysed along an elevation gradient considering four traits: social structure (monogynous vs. polygynous), worker size, pupal development, and nest structure. 3. Ant species richness and functional diversity decreased with decreasing temperature. Species found in colder habitats tended to live in subterranean nests rather than in mounds and exhibit a polymorphism in queen number, either within or across populations. The phylogenetic diversity did not decrease at colder temperature: Formicinae and Myrmicinae occupied the full range of elevations investigated. 4. An insulation experiment indicated that mounds are more thermally insulated against the cold compared with soil. The absence of a mound-building ant from high elevations probably results from a reduction in the amount of vegetal materials provided by coniferous trees. 5. More severe abiotic conditions at higher elevations act as a filter on ant assemblages, directly through physiological tolerances to the abiotic conditions and indirectly as the vegetation necessary for nest building shifts with elevation.</list-item
Resumo:
OBJECTIVES: Renal tubular sodium handling was measured in healthy subjects submitted to acute and chronic salt-repletion/salt-depletion protocols. The goal was to compare the changes in proximal and distal sodium handling induced by the two procedures using the lithium clearance technique. METHODS: In nine subjects, acute salt loading was obtained with a 2 h infusion of isotonic saline, and salt depletion was induced with a low-salt diet and furosemide. In the chronic protocol, 15 subjects randomly received a low-, a regular- and a high-sodium diet for 1 week. In both protocols, renal and systemic haemodynamics and urinary electrolyte excretion were measured after an acute water load. In the chronic study, sodium handling was also determined, based on 12 h day- and night-time urine collections. RESULTS: The acute and chronic protocols induced comparable changes in sodium excretion, renal haemodynamics and hormonal responses. Yet, the relative contribution of the proximal and distal nephrons to sodium excretion in response to salt loading and depletion differed in the two protocols. Acutely, subjects appeared to regulate sodium balance mainly by the distal nephron, with little contribution of the proximal tubule. In contrast, in the chronic protocol, changes in sodium reabsorption could be measured both in the proximal and distal nephrons. Acute water loading was an important confounding factor which increased sodium excretion by reducing proximal sodium reabsorption. This interference of water was particularly marked in salt-depleted subjects. CONCLUSION: Acute and chronic salt loading/salt depletion protocols investigate different renal mechanisms of control of sodium balance. The endogenous lithium clearance technique is a reliable method to assess proximal sodium reabsorption in humans. However, to investigate sodium handling in diseases such as hypertension, lithium should be measured preferably on 24 h or overnight urine collections to avoid the confounding influence of water.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.
Resumo:
Voriconazole (VRC) is a broad-spectrum antifungal triazole with nonlinear pharmacokinetics. The utility of measurement of voriconazole blood levels for optimizing therapy is a matter of debate. Available high-performance liquid chromatography (HPLC) and bioassay methods are technically complex, time-consuming, or have a narrow analytical range. Objectives of the present study were to develop new, simple analytical methods and to assess variability of voriconazole blood levels in patients with invasive mycoses. Acetonitrile precipitation, reverse-phase separation, and UV detection were used for HPLC. A voriconazole-hypersusceptible Candida albicans mutant lacking multidrug efflux transporters (cdr1Delta/cdr1Delta, cdr2Delta/cdr2Delta, flu1Delta/flu1Delta, and mdr1Delta/mdr1Delta) and calcineurin subunit A (cnaDelta/cnaDelta) was used for bioassay. Mean intra-/interrun accuracies over the VRC concentration range from 0.25 to 16 mg/liter were 93.7% +/- 5.0%/96.5% +/- 2.4% (HPLC) and 94.9% +/- 6.1%/94.7% +/- 3.3% (bioassay). Mean intra-/interrun coefficients of variation were 5.2% +/- 1.5%/5.4% +/- 0.9% and 6.5% +/- 2.5%/4.0% +/- 1.6% for HPLC and bioassay, respectively. The coefficient of concordance between HPLC and bioassay was 0.96. Sequential measurements in 10 patients with invasive mycoses showed important inter- and intraindividual variations of estimated voriconazole area under the concentration-time curve (AUC): median, 43.9 mg x h/liter (range, 12.9 to 71.1) on the first and 27.4 mg x h/liter (range, 2.9 to 93.1) on the last day of therapy. During therapy, AUC decreased in five patients, increased in three, and remained unchanged in two. A toxic encephalopathy probably related to the increase of the VRC AUC (from 71.1 to 93.1 mg x h/liter) was observed. The VRC AUC decreased (from 12.9 to 2.9 mg x h/liter) in a patient with persistent signs of invasive aspergillosis. These preliminary observations suggest that voriconazole over- or underexposure resulting from variability of blood levels might have clinical implications. Simple HPLC and bioassay methods offer new tools for monitoring voriconazole therapy.
Resumo:
AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
Zeta potential is a physico-chemical parameter of particular importance to describe sorption of contaminants at the surface of gas bubbles. Nevertheless, the interpretation of electrophoretic mobilities of gas bubbles is complex. This is due to the specific behavior of the gas at interface and to the excess of electrical charge at interface, which is responsible for surface conductivity. We developed a surface complexation model based on the presence of negative surface sites because the balance of accepting and donating hydrogen bonds is broken at interface. By considering protons adsorbed on these sites followed by a diffuse layer, the electrical potential at the head-end of the diffuse layer is computed and considered to be equal to the zeta potential. The predicted zeta potential values are in very good agreement with the experimental data of H-2 bubbles for a broad range of pH and NaCl concentrations. This implies that the shear plane is located at the head-end of the diffuse layer, contradicting the assumption of the presence of a stagnant diffuse layer at the gas/water interface. Our model also successfully predicts the surface tension of air bubbles in a KCl solution. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.
Resumo:
Cyclosporine A (CsA) has been demonstrated to be effective for the treatment of a variety of ophthalmological conditions, including ocular surface disorders such as the dry eye disease (DED). Since CsA is characterised by its low water solubility, the development of a topical ophthalmic formulation represents an interesting pharmaceutical question. In the present study, two different strategies to address this challenge were studied and compared: (i) a water-soluble CsA prodrug formulated within an aqueous solution and (ii) a CsA oil-in-water emulsion (Restasis, Allergan Inc., Irvine, CA). First, the prodrug formulation was shown to have an excellent ocular tolerance as well as no influence on the basal tear production; maintaining the ocular surface properties remained unchanged. Then, in order to allow in vivo investigations, a specific analytical method based on ultra high pressure liquid chromatography coupled with triple quadrupole mass spectrometer (UHPLC-MS/MS) was developed and optimised to quantify CsA in ocular tissues and fluids. The CsA ocular kinetics in lachrymal fluid for both formulations were found to be similar between 15 min and 48 h. The CsA ocular distribution study evidenced the ability of the prodrug formulation to penetrate into the eye, achieving therapeutically active CsA levels in tissues of both the anterior and posterior segments. In addition, the detailed analysis of the in vivo data using a bicompartmental model pointed out a higher bioavailability and lower elimination rate for CsA when it is generated from the prodrug than after direct application as an emulsion. The interesting in vivo properties displayed by the prodrug solution make it a safe and suitable option for the treatment of DED.
Resumo:
RATIONALE The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen (2H) and oxygen (18O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. METHODS Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659?days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. RESULTS Changes of up to +5 parts per thousand for d2H values and +2.0 parts per thousand for d18O values were measured for water after more than 1?year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal (TM) cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original d2H and d18O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. CONCLUSIONS The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and storage procedures are needed both for laboratory standards and for unknown samples. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Crystallization of anatectic melts in high-temperature metamorphic terrains releases volatile-rich magmas that can be transported into adjacent lithologies. This study addresses the variations in the oxygen, boron and hydrogen isotopic composition of aplite-pegmatite dikes that formed during the crystallization of anatectic melts in regional high-temperature metamorphism on the island of Naxos, Greece, and propagated upward into the overlying sequences of metamorphic schist. The transport distance of these dikes was increased through a significant horizontal component of travel that was imposed by contemporaneous low-angle extensional shearing. Laser fluorination oxygen isotope analyses of quartz, tourmaline, garnet, and biotite mineral separates from the aplite-pegmatite dikes show a progressive rise in delta(18)O values with increasing distance from the core. Oxygen isotope fractionations among quartz, tourmaline, and garnet show temperature variations from > 700degreesC down to similar to400degreesC. This range is considered to reflect isotopic fractionation beginning with crystallization at high temperatures in water-undersaturated conditions and then evolving through lower temperature crystallization and retrograde sub-solidus exchange. Two processes are examined for the cause of the progressive increase in delta(18)O values: (1) heterogeneous delta(18)O sources and (2) fluid-rock exchange between the aplite/pegmatite magmas and their host rock. Although the former process cannot be ruled out, there is as yet no evidence in the exposed sequences on Naxos for the presence of a suitable high delta(18)O magma source. In contrast, a tendency for the delta(18)O of quartz in the aplite/pegmatite dikes to approach that of the quartz in the metamorphic rock suggests that fluid-rock exchange with the host rock may potentially be an important process. Advection of fluid into the magma is examined based on Darcian fluid flow into an initially water-undersaturated buoyantly propagating aplitic dike magma. It is shown that such advective flow could only account for part of the O-18-enrichment, unless it were amplified by repeated injection of magma pulses, fluid recycling, and deformation-assisted post-crystallization exchange. The mechanism is, however, adequate to account for hydrogen isotope equilibration between dike and host rock. In contrast, variations in the delta(11)B values of tourmalines suggest that B-11/B-10 fractionation during crystallization and/or magma degassing was the major control of boron geochemistry rather than fluid-rock interaction and that the boron isotopic system was decoupled from that of oxygen. Copyright (C) 2003 Elsevier Ltd.