785 resultados para High-intensity exercise
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To discuss the role of physical exercise in the attenuation of cancer cachexia-associated symptoms, and upon the outcome of chemotherapy, with special focus on the anti-inflammatory role of chronic exercise. The review addresses the recent findings regarding the positive effects of endurance and strength exercise training upon metabolic dysfunction, systemic inflammation and body composition alterations in the syndrome of cachexia. The employment of different exercise protocol strategies, in respect to intensity, duration, work load and in concomitance with pharmacological treatment is considered. Cachexia is a multifactorial wasting syndrome afflicting patients with cancer, chronic obstructive pulmonary disease, chronic heart failure, trauma, among other diseases. This condition markedly compromises the quality of life, treatment outcome and survival. Recent literature indicates an unequivocal role of chronic exercise in modulating cachexia and other cancer-associated dysfunctions. Exercise is proposed as a complementary treatment in cancer, and represents a function-preserving, anti-inflammatory and metabolism-modulating strategy with low cost, and high versatility and availability. Furthermore, exercise decreases cancer recurrence and presents a positive impact on public health management, reducing hospitalization and medication costs.
Resumo:
Purpose The aim of the present study was to evaluate the effects of intensity and interval of recovery on performance in the bench press exercise, and the response of salivary lactate and alpha amylase levels. Methods Ten sportsman (aged 29 ± 4 years; body mass index 26 ± 2 kg/cm2 ) were divided in two groups: G70 (performing a bench press exercise at 70 % one repetition maximum—1RM), and G90 (performing a bench press exercise at 90 %—1RM). All groups were engaged in three intervals of recovery (30, 60 and 90 s). The maximum number of repetitions (MNR) and total weight lifted were computed, and saliva samples were collected 15 min before and after different intervals of recovery. For the comparison of the performance and biochemistry parameters, ANOVA tests for repeated measurements were conducted, with a significance level set at 5 %. Results In G70, the 30 s MNR was lower than the 60 and 90 s intervals of recovery (p\0.05) and the MNR with the 60 s interval of recovery was lower than the 90 s interval of recovery (p\0.041). Similarly, in G90 with the 30 s of interval of recovery, the sets were lower than observed with the 60 and 90 s (p\0.05), and MNR with the 60 s interval of recovery was lower than the 90 s interval of recovery (p\0.05). The salivary lactate showed an increase after exercise (p\0.05) when compared with the rest period for all groups, and no effects were observed for salivary alpha amylase. Conclusions Based on this result, the sets and reps can be modified to change the recovery time. This effect is very useful to improve the performance in relationship to different fitness levels.
Manipulation effects of prior exercise intensity feedback by the Borg scale during open-loop cycling
Resumo:
Objective To verify the effects of exercise intensity deception by the Borg scale on the ratings of perceived exertion (RPE), heart rate (HR) and performance responses during a constant power output open-loop exercise. Methods Eight healthy men underwent a maximal incremental test on a cycle ergometer to identify the peak power output (PPO) and heart rate deflection point (HRDP). Subsequently, they performed a constant power output trial to exhaustion set at the HRDP intensity, in deception (DEC) and informed (INF) conditions: DEC-subjects were told that they would be cycling at an intensity corresponding to two categories below the RPE quantified at the HRDP; INF-subjects were told that they would cycle at the exact intensity corresponding to the RPE quantified at the HRDP. Results The PPO and power output at the HRDP obtained in maximal incremental tests were 247.5 +/- 32.1 W and 208.1 +/- 27.1 W, respectively. No significant difference in the time to exhaustion was found between DEC (525 +/- 244 s) or INF (499 +/- 224 s) trials. The slope and the first and second measurements of the RPE and HR parameters showed no significant difference between trials. Conclusions Psychophysiological variables such as RPE and HR as well as performance were not affected when exercise intensity was deceptively manipulated via RPE scores. This may suggest that unaltered RPE during exercise is a regulator of performance in this open-loop exercise.
Resumo:
Rationale: Lymphangioleiomyomatosis (LAM) is characterized by exercise performance impairment. Although airflow limitation is common, no previous studies have evaluated the prevalence and impact of dynamic hyperinflation (DH) in LAM. Objectives: To investigate the dynamic responses during maximal exercise and the prevalence, predictors, and repercussions of DH in LAM. Methods: Forty-two patients with LAM performed symptom-limited incremental cycle exercise and pulmonary functions tests (PFTs) and were compared with 10 age-matched healthy women. Dyspnea intensity, inspiratory capacity, oxygen saturation, and cardiac, metabolic, and respiratory variables were assessed during exercise. Patients with LAM also performed a 6-minute walk test (6MWT). Measurements and Main Results: Patients with LAM had higher baseline dyspnea, poorer quality of life, obstructive pattern, air trapping, and reduced diffusing capacity of carbon monoxide in PFTs. Although they had the same level of regular physical activity, their maximal exercise performance was reduced and was associated with ventilatory limitation, greater desaturation, and dyspnea. The prevalence of DH was high in LAM (55%), even in patients with mild spirometric abnormalities, and was correlated with airflow obstruction, air trapping, and diffusing capacity of carbon monoxide. Compared with the non-DH subgroup, the patients who developed DH had a ventilatory limitation contributing to exercise cessation on cycling and higher desaturation and dyspnea intensity during the 6MWT. Conclusions: Ventilatory limitation and gas exchange impairment are important causes of exercise limitation in LAM. DH is frequent in LAM, even in patients with mild spirometric abnormalities. DH was associated with the severity of disease, higher dyspnea, and lower oxygen saturation. In the 6MWT, desaturation and dyspnea were greater in patients with DH.
Resumo:
The aims were both to determine lactate and ventilatory threshold during incremental resistance training and to analyze the acute cardiorespiratory and metabolic responses during constant-load resistance exercise at lactate threshold (LT) intensity. Ten healthy men performed 2 protocols on leg press machine. The incremental test was performed to determine the lactate and ventilatory thresholds through an algorithmic adjustment method. After 48 h, a constant-load exercise at LT intensity was executed. The intensity of LT and ventilatory threshold was 27.1 +/- 3.7 and 30.3 +/- 7.9% of 1RM, respectively (P=0.142). During the constant-load resistance exercise, no significant variation was observed between set 9 and set 15 for blood lactate concentration (3.3 +/- 0.9 and 4.1 +/- 1.4 mmol.L-1, respectively. P=0.166) and BORG scale (11.5 +/- 2.9 and 13.0 +/- 3.5, respectively. P=0.783). No significant variation was observed between set 6 and set 15 for minute ventilation (19.4 +/- 4.9 and 22.4 +/- 5.5L. min(-1), respectively. P=0.091) and between S3 and S15 for VO2 (0.77 +/- 0.18 and 0.83 +/- 0.16L. min(-1), respectively. P=1.0). Constant-load resistance exercise at LT intensity corresponds to a steady state of ventilatory, cardio-metabolic parameters and ratings of perceived exertion.
Resumo:
Post-exercise hypotension (PEH), the reduction of blood pressure (BP) after a single bout of exercise, is of great clinical relevance. As the magnitude of this phenomenon seems to be dependent on pre-exercise BP values and chronic exercise training in hypertensive individuals leads to BP reduction; PEH could be attenuated in this context. Therefore, the aim of the present study was to investigate whether PEH remains constant after resistance exercise training. Fifteen hypertensive individuals (46 +/- 8 years; 88 +/- 16 kg; 30 +/- 6% body fat; 150 +/- 13/93 +/- 5mm Hg systolic/diastolic BP, SBP/DBP) were withdrawn from medication and performed 12 weeks of moderate-intensity resistance training. Parameters of cardiovascular function were evaluated before and after the training period. Before the training program, hypertensive volunteers showed significant PEH. After an acute moderate-intensity resistance exercise session with three sets of 12 repetitions (60% of one repetition maximum) and a total of seven exercises, BP was reduced post-exercise (45-60 min) by an average of aproximately -22mm Hg for SBP, -8mm Hg for DBP and -13 mm Hg for mean arterial pressure (P<0.05). However, this acute hypotensive effect did not occur after the 12 weeks of training (P>0.05). In conclusion, our data demonstrate that PEH, following an acute exercise session, can indeed be attenuated after 12 weeks of training in hypertensive stage 1 patients not using antihypertensive medication. Journal of Human Hypertension (2012) 26, 533-539; doi:10.1038/jhh.2011.67; published online 7 July 2011
Resumo:
Abstract Background Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70–80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx-) were measured. Concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NOx- levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation.
Resumo:
As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity
Resumo:
[EN] The tight relation between arterial oxygen content and maximum oxygen uptake (Vv(o2max)within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O(2) extraction capacity with chronic hypoxia, and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4,100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia. The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min(-1) mmHg(-1)) 55.2+/-3.7 (SL), 48.0+/-1.7 (W2), 37.8+/-0.4 (W8) and 27.7+/-1.5 (Nat). However, when correcting oxygen conductance for the observed reduction in maximal leg blood flow with acclimatization the effect diminished. When calculating a hypothetical leg V(o2max)at altitude using either the leg blood flow or the O(2) conductance values obtained at sea level, the former values were almost completely restored to sea level values. This would suggest that the major determinant V(o2max)for not to increase with acclimatization is the observed reduction in maximal leg blood flow and O(2) conductance.