837 resultados para High-fat diets
Resumo:
The aim of the present study was to compare the response of a range of atherogenic and thrombogenic risk markers to two dietary levels of saturated fatty acid (SFA) substitution with monounsaturated fatty acids (MUFA) in students living in a university hall of residence. Although the benefits of such diets have been reported for plasma lipoproteins in high-risk groups, more needs to be known about effects of more modest SFA-MUFA substitutions over the long term and in young healthy adults. In a parallel design over 16 weeks, fifty-one healthy young subjects were randomised to one of two diets: (1) a moderate-MUFA diet in which 16 g dietary SFA/100 g total fatty acids were substituted with MUFA (n 25); (2) a high-MUFA diet in which 33 g dietary SFA/100 g total fatty acids were substituted with MUFA (n 26). All subjects followed an 8-week run-in diet (reference diet), with a fatty acid composition close to the UK average values. There were no differences in plasma lipid responses between the two diets over 16 weeks of the study with similar reductions in total cholesterol (P<0.001) and LDL-cholesterol (P<0.01) in both groups; a small but significant reduction in HDL-cholesterol was also observed in both groups (P<0.01). Platelet responses to ADP (P<0.01) and arachidonic acid (P<0.05) differed with time on the two diets; at 16 weeks, platelet aggregatory response to ADP was significantly lower on the high-MUFA than the moderate-MUFA (P<0.01) diet; ADP responses were also significantly lower within this group at 8 (P< 0.05) and 16 (P< 0.01) weeks compared with baseline. There were no differences in fasting factor VII activity (factors VIII and VIIag), fibrinogen concentration or tissue-type plasminogen activator activity between the diets. There were no differences in postprandial factor VIII responses to a standard meal (area under the curve) between the diets after 16 weeks, but postprandial factor VIII response was lower than on the high-MUFA diet compared with baseline (P<0.01). In conclusion, a high-MUFA diet sustains potentially beneficial effects on platelet aggregation and postprandial activation of factor VII. Moderate or high substitution of MUFA for SFA achieves similar reductions in fasting blood lipids in young healthy subjects.
Resumo:
Objective: To describe the calculations and approaches used to design experimental diets of differing saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) compositions for use in a long-term dietary intervention study, and to evaluate the degree to which the dietary targets were met. Design, setting and subjects: Fifty-one students living in a university hall of residence consumed a reference (SFA) diet for 8 weeks followed by either a moderate MUFA (MM) diet or a high MUFA (HM) diet for 16 weeks. The three diets were designed to differ only in their proportions of SFA and MUFA, while keeping total fat, polyunsaturated fatty acids (PUFA), trans-fatty acids, and the ratio of palmitic to stearic acid, and n-6 to n-3 PUFA, unchanged. Results: Using habitual diet records and a standardised database for food fatty acid compositions, a sequential process of theoretical fat substitutions enabled suitable fat sources for use in the three diets to be identified, and experimental margarines for baking, spreading and the manufacture of snack foods to be designed. The dietary intervention was largely successful in achieving the fatty acid targets of the three diets, although unintended differences between the original target and the analysed fatty acid composition of the experimental margarines resulted in a lower than anticipated MUFA intake on the HM diet, and a lower ratio of palmitic to stearic acid compared with the reference or MM diet. Conclusions: This study has revealed important theoretical considerations that should be taken into account when designing diets of specific fatty acid composition, as well as practical issues of implementation.
Resumo:
"Yor" is a traditional sausage like product widely consumed in Thailand. Its textures are usually set by steaming, in this experiment ultra-high pressure was used to modify the product. Three types of hydrocolloid; carboxymethylcellulose (CMC), locust bean gum (LBG) and xanthan gum, were added to minced ostrich meat batter at concentration of 0-1% and subjected to high pressure 600 Mpa, 50 degrees C, 40 min. The treated samples were analysed for storage (G) and loss (G '') moduli by dynamic oscillatory testing as well as creep compliance for control stress measurement. Their microstructures using confocal microscopy were also examined. Hydrocolloid addition caused a significant (P < 0.05) decrease in both the G' and G '' moduli. However the loss tangent of all samples remained unchanged. Addition of hydrocolloids led to decreases in the gel network formation but appears to function as surfactant materials during the initial mixing stage as shown by the microstructure. Confocal microscopy suggested that the size of the fat droplets decreased with gum addition. The fat droplets were smallest on the addition of xanthan gum and increased in the order CMC, LBG and no added gum, respectively. Creep parameters of ostrich yors with four levels of xanthan gum addition (0.50%, 0.75%, 1.00% and 1.25%) showed an increase in the instantaneous compliance (J(0)), the retarded compliance (J(1)) and retardation time (lambda(1)) but a decrease in the viscosity (eta(0)) with increasing levels of addition. The results also suggested that the larger deformations used during creep testing might be more helpful in assessing the mechanical properties of the product than the small deformations used in oscillatory rheology. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The crystallisation behaviour of three fat blends, comprising a commercial shortening, a blend of fats with a very low trans fatty acid content ("low-trans") and a blend including hardened rapeseed oil with a relatively high trans fatty acid content ("high-trans") was studied. Molten fats were lowered to a temperature of 31 degrees C and stirred for 0, 15, 30, 45 and 60 min. Samples were removed and their rheological properties studied, using a controlled stress rheometer, employing a frequency sweep procedure. Effects of the progressive crystallisation at 31 degrees C on the melting profile of fat samples removed from the stirred vessel and solidified at -20 degrees C were also studied by differential scanning calorimetry (DSC). The rheological profiles obtained suggested that all of the fats studied had weak viscoelastic "liquid" structures when melted, but these changed to structures perceived by the rheometer as weak viscoelastic "gels" in the early stages of crystallisation (G' (storage modulus) > G" (loss modulus) over most of the measured frequency range). These subsequently developed into weak viscoelastic semi-solids, showing frequency dependent behaviour on further crystallisation. These changes in behaviour were interpreted as changes from a small number of larger crystals "cross-linking" in a liquid matrix to a larger number of smaller crystals packed with a "slip plane" of liquid oil between them. The rate of crystallisation of the three fats was in the order high trans > low-trans > commercial shortening. Changes in the DSC melting profile due to fractionation of triacylglycerols during the crystallisation at 31 degrees C were evident for all three fats. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions.
Resumo:
The objectives of the present study were 1) to evaluate the effects of supplemental fat and ME intake on plasma concentrations of glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide, ghrelin, and oxyntomodulin; and 2) to determine the association of these peptides with DMI and the hypothalamic concentration of mRNA for the following neuropeptides: neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC). In a completely randomized block design with a 2 x 2 factorial arrangement of treatments, 32 pens with 2 wethers each were restricted-fed (2.45 Mcal/lamb per day) or offered diets ad libitum (n = 16) with or without 6% supplemental fat (n = 16) for a period of 30 d. Dry matter intake was measured daily. On d 8, 15, 22, and 29, BW was measured before feeding, and 6 h after feeding, blood samples were collected for plasma measurement of insulin, GLP-1, CCK, ghrelin, glucose-dependent insulinotropic polypeptide, oxyntomodulin, glucose, and NEFA concentrations. On d 29, blood was collected 30 min before feeding for the same hormone and metabolite analyses. At the end of the experiment, wethers were slaughtered and the hypothalami were collected to measure concentrations of NPY, AgRP, and POMC mRNA. Offering feed ad libitum (resulting in greater ME intake) increased plasma insulin and NEFA concentrations (P = 0.02 and 0.02, respectively) and decreased hypothalamic mRNA expression of NPY and AgRP (P = 0.07 and 0.02, respectively) compared with the restricted-fed wethers. There was a trend for the addition of dietary fat to decrease DMI (P = 0.12). Addition of dietary fat decreased insulin and glucose concentrations (P < 0.05 and 0.01, respectively) and tended to increase hypothalamic mRNA concentrations for NPY and AgRP (P = 0.07 and 0.11, respectively). Plasma GLP-1 and CCK concentrations increased in wethers offered feed ad libitum compared with restricted-fed wethers, but the response was greater when wethers were offered feed ad libitum and had supplemental fat in the diet (fat x intake interaction, P = 0.04). The prefeeding plasma ghrelin concentration was greater in restricted-fed wethers compared with those offered feed ad libitum, but the concentrations were similar 6 h after feeding (intake x time interaction, P < 0.01). Supplemental dietary fat did not affect (P = 0.22) plasma ghrelin concentration. We conclude that insulin, ghrelin, CCK, and GLP-1 may regulate DMI in sheep by regulating the hypothalamic gene expression of NPY, AgRP, and POMC.
Resumo:
The antioxidant capacity of some herbs used in dietology practice was determined by the DPPH free radical method, which was calibrated with ascorbic acid. Partially hydrophilic phenolic compounds are the most active compounds in plants, and therefore water was used as the extraction agent. Besides antioxidant capacity, the content of total phenolic compounds was also measured and a strong correlation between these two variables was found. The extracts of lemon balm (Melissa officinalis L.), peppermint (Mentha x piperita L.), oregano (Origanum vulgare L.), Greek oregano (Origanum heracleoticum L.), sage (Salvia officinalis L.) and winter savory (Satureja montana L.) showed very significant activity. It was comparable with the activity of green tea in the case of oregano and peppermint. Lower activity was observed in the case of rosemary (Rosmarinus officinalis L.), marjoram (Majorana hortensis), hyssop (Hyssopus officinalis L.), sweet basil (Ocimum basilicum), and lovage (Levisticum officinale Koch.). The inhibitory activity of the herb extracts was monitored also during the autooxidation of lard. Very high antioxidant capacity was observed mainly in sage samples, but also in marjoram and Greek oregano. The extracts of peppermint, oregano, rosemary, winter savory, lemon balm and hyssop showed middle activity comparable to that of alpha-tocopherol. The antioxidant capacity of sweet basil and lovage was insignificant.
Resumo:
The inequality of nutrition and obesity re-focuses concern on who in society is consuming the worst diet. Identification of individuals with the worst of dietary habits permits for targeting interventions to assuage obesity among the population segment where it is most prevalent. We argue that the use of fiscal interventions does not appropriately take into account the economic, social and health circumstances of the intended beneficiaries of the policy. This paper reviews the influence of socio-demographic factors on nutrition and health status and considers the impacts of nutrition policy across the population drawing on methodologies from both public health and welfare economics. The effects of a fat tax on diet are found to be small and while other studies show that fat taxes saves lives, we show that average levels of disease risk do not change much: those consuming particularly bad diets continue to do so. Our results also suggest that the regressivity of the policy increases as the tax becomes focused on products with high saturated fat contents. A fiscally neutral policy that combines the fat tax with a subsidy on fruit and vegetables is actually more regressive because consumption of these foods tends to be concentrated in socially undeserving households. We argue that when inequality is of concern, population-based measures must reflect this and approaches that target vulnerable populations which have a shared propensity to adopt unhealthy behaviours are appropriate.
Resumo:
A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH(4)) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH oil the production of individual volatile fatty acids and CH, as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed oil CH(4) emission, with a maximum difference (across all forage types and all levels of DM 1) of 49 and 77% in g CH(4)/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0.1 and 0.4, respectively (values ranging from 10.2 to 19.5 g CH(4)/kg FCM). The lowest emission was established for early Cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH(4)/kg FCM declined oil average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0.1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0.4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH, emission per kg FCM mainly as a result of a higher DM I and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with COWS consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0.12 of the observed mean. Both observed and predicted emission expressed in g CH(4)/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH, emission in cattle sheds oil Dutch dairy farms and indicated that oil average a fraction of 0.28 of the total emissions must have originated from manure under these circumstances.
Resumo:
Four fat blends based on palm fractions in combination with high oleic sunflower oil (HOSF) with a relatively low saturated fatty acid content (29.2±0.85%, i.e. less than 50% of that of butter) were prepared. The saturated fat was located in different triacylglycerols (TAG) structures in each blend. Principal saturated TAG were derived from palm stearin (POs, containing tripalmitoyl glycerol - PPP), palm mid fraction (PMF, containing 1,3-dipalmitoyl-2-oleoyl glycerol - POP) and interesterified PMF (inPMF, containing PPP, POP and rac-1,2-dipalmitoyl-3-oleoyl glycerol - PPO). Thus, in blend 1, composed of POs and HOSF, the saturates resided principally in PPP. In blend 2, composed of POs, PMF and HOSF, the principal saturate-containing TAG were PPP and POP. Blend 3, composed of inPMF and HOSF, was similar to blend 2 except that the disaturated TAG comprised a 2:1 mixture of PPO:POP. Finally, blend 4, a mixture of PMF and HOSF, had saturates present mainly as POP. The physical properties and the functionality of blends, as shortenings for puff pastry laminated in a warm bakery environment (20-30°C), were compared with each other, and with butter. Puff pastry prepared with blend 1 (POs:HOSF 29:71) and blend 4 (PMF:HOSF 41:59), was very hard; blend 2 (POs:PMF:HOSF 13:19:68) was most similar to butter in the compressibility of the baked product and it performed well in an independent baking trial; blend 3 (inPMF:HOSF 40:60) gave a product that required a higher force for compression than butter.
Resumo:
Background and aims CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Methods and results Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. Conclusion The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Clinical Trials Registry number NCT00429195.
Resumo:
A cross-sectional analysis of ethnic differences in dietary intake, insulin sensitivity and beta-cell function, using the intravenous glucose tolerance test (IVGTT), was conducted on 497 healthy adult participants of the ‘Reading, Imperial, Surrey, Cambridge, and Kings’ (RISCK) study. Insulin sensitivity (Si) was significantly lower in African-Caribbean (AC) and South Asian (SA) participants [IVGTT-Si; AC: 2.13 vs SA: 2.25 vs white-European (WE): 2.84 (×10−4 mL µU min)2, p < 0.001]. AC participants had a higher prevalence of anti-hypertensive therapy (AC: 19.7% vs SA: 7.5%), the most cardioprotective lipid profile [total:high-density lipoprotein (HDL); AC: 3.52 vs SA: 4.08 vs WE: 3.83, p = 0.03] and more pronounced hyperinsulinaemia [IVGTT–acute insulin response (AIR)] [AC: 575 vs SA: 428 vs WE: 344 mL/µU/min)2, p = 0.002], specifically in female participants. Intake of saturated fat and carbohydrate was lower and higher in AC (10.9% and 50.4%) and SA (11.1% and 52.3%), respectively, compared to WE (13.6% and 43.8%, p < 0.001). Insulin resistance in ACs is characterised by ‘normal’ lipid profiles but high rates of hypertension and pronounced hyperinsulinaemia.
Resumo:
In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen
Resumo:
The effects of forage conservation method on plasma lipids, mammary lipogenesis, and milk fat were examined in 2 complementary experiments. Treatments comprised fresh grass, hay, or untreated (UTS) or formic acid treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows fed fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare a diet based on fresh grass followed by hay during 2 consecutive 14-d periods, separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3 × 3 Latin square design, with 14-d periods to compare hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Arterial concentrations of triacylglycerol (TAG) and phospholipid were higher in cows fed fresh grass, UTS, and FAS compared with hay. Nonesterified fatty acid (NEFA) concentrations and the relative abundance of 18:2n-6 and 18:3n-3 in TAG of arterial blood were also higher in cows fed fresh grass than conserved forages. On all diets, TAG was the principle source of fatty acids (FA) for milk fat synthesis, whereas mammary extraction of NEFA was negligible, except during zero-grazing, which was associated with a lower, albeit positive calculated energy balance. Mammary FA uptake was higher and the synthesis of 16:0 lower in cows fed fresh grass than hay. Conservation of grass by drying or ensiling had no influence on mammary extraction of TAG and NEFA, despite an increase in milk fat secretion for silages compared with hay and for FAS than UTS. Relative to hay, milk fat from fresh grass contained lower 12:0, 14:0, and 16:0 and higher S3,R7,R11,15-tetramethyl-16:0, cis-9 18:1, trans-11 18:1, cis-9,trans-11 18:2, 18:2n-6, and 18:3n-3 concentrations. Even though conserved forages altered mammary lipogenesis, differences in milk FA composition were relatively minor, other than a higher enrichment of S3,R7,R11,15-tetramethyl-16:0 in milk from silages compared with hay. In conclusion, differences in milk fat composition on fresh grass relative to conserved forages were associated with a lower energy balance, increased uptake of preformed FA, and decreased synthesis of 16:0 de novo in the mammary glands, in the absence of alterations in stearoyl-coenzyme A desaturase activity.
Resumo:
In vitro studies found that inclusion of dried stinging nettle (Urtica dioica) at 100 mg/g dry matter (DM) increased the pH of a rumen fluid inoculated fermentation buffer by 30% and the effect was persistent for 7 days. Our objective was to evaluate the effects of adding stinging nettle haylage to a total mixed ration on feed intake, eating and rumination activity, rumen pH, milk yield, and milk composition of lactating dairy cows. Six lactating Holstein-Friesian cows were used in a replicated 3 × 3 Latin Square design experiment with 3 treatments and 3 week periods. Treatments were a control (C) high-starch (311 g/kg DM) total mixed ration diet and two treatment diets containing 50 (N5) and 100 (N10) g nettle haylage (DM/kg) as a replacement for ryegrass silage (Lolium perenne). There was an increase (linear, P < 0.010) in the proportion of large particles and a reduction in medium (linear, P = 0.045) and fine particles (linear, P = 0.026) in the diet offered with increasing nettle inclusion. A numerical decrease (linear, P = 0.106) in DM intake (DMI) was observed as nettle inclusion in the diet increased. Milk yield averaged 20.3 kg/day and was not affected by diet. There was a decrease (quadratic, P = 0.01) in the time animals spent ruminating as nettle inclusion in the diet increased, in spite of an increase in the number of boli produced daily for the N5 diet (quadratic, P = 0.031). Animals fed the N10 diet spent less time with a rumen pH below 5.5 (P < 0.05) than cows fed the N5 diet. Averaged over an 8.5 h sampling period, there were no changes in the concentration or proportions of acetate or propionate in the rumen, but feeding nettle haylage reduced the concentrations of n-butyrate (quadratic, P < 0.001), i-butyrate (linear, P < 0.009) and n-caproate (linear, P < 0.003). Milk and fat and protein corrected milk yield were not affected when nettles replaced ryegrass silage in the diet of lactating dairy cows, despite a numerical reduction in feed intake. Rumination activity was reduced by the addition of nettle haylage to the diet, which may reflect differences in fibre structure between the nettle haylage and ryegrass silage fed. Changes observed in rumen pH suggest potential benefits of feeding nettle haylage for reducing rumen acidosis. However, the extent to which these effects were due to the fermentability and structure of the nettle haylage compared to the ryegrass silage fed, or a bioactive component of the nettles, is not certain