986 resultados para Hazardous geographic environments
Resumo:
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardised approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardised assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large-scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services
Resumo:
Tese de doutoramento, Energia e Ambiente (Energia e Desenvolvimento Sustentável), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Thesis (Ph.D.)--University of Washington, 2013
Resumo:
There are many species among the Alternaria genus, which hosts on economically important crops causing significant yield losses. Less attention has been paid to fungi hosting on plants constituting substantial components of pastures and meadows. Alternaria spp. spores are also recognised as important allergens. A 7-day volumetric spore trap was used to monitor the concentration of airborne fungal spores. Air samples were collected in Worcester, England (2006–2010). Days with a high spore count were then selected. The longest episode that occurred within a five year study was chosen for modelling. Two source maps presenting distribution of crops under rotation and pastures in the UK were produced. Back trajectories were calculated using the HYSPLIT model. In ArcGIS clusters of trajectories were studied in connection with source maps by including the height above ground level and the speed of the air masses. During the episode no evidence for a long distance transport from the continent of Alternaria spp. spores was detected. The overall direction of the air masses fell within the range from South-West to North. The back trajectories indicated that the most important sources of Alternaria spp. spores were located in the West Midlands of England.
Resumo:
The need for more dementia friendly design in hospitals and other care settings is now widely acknowledged. Working with 26 NHS Trusts in England as part of a Department of Health commissioned programme, The King’s Fund developed a set of overarching design principles and an environmental assessment tool for hospital wards in 2012. Following requests from other sectors, additional tools were developed for hospitals, care homes, health centres and housing with care. The tools have proven to be effective in both disseminating the principles of dementia friendly design and in enabling the case to be made for improvements that have a positive effect on patient outcomes and staff morale. This paper reports on the development,use and review of the environmental assessment tools, including further work that is now being taken forward by The Association for Dementia Studies, University of Worcester.
Resumo:
Thesis (Master's)--University of Washington, 2015
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Thesis (Master's)--University of Washington, 2015
Resumo:
Senior thesis for Oceanography 445
Resumo:
An innovation network can be considered as a complex adaptive system with evolution affected by dynamic environments. This paper establishes a multi-agent-based evolution model of innovation networks under dynamic settings through computational and logical modeling, and a multi-agent system paradigm. This evolution model is composed of several sub-models of agents' knowledge production by independent innovations in dynamic situations, knowledge learning by cooperative innovations covering agents' heterogeneities, decision-making for innovation selections, and knowledge update considering decay factors. On the basis of above-mentioned sub-models, an evolution rule for multi-agent based innovation network system is given. The proposed evolution model can be utilized to simulate and analyze different scenarios of innovation networks in various dynamic environments and support decision-making for innovation network optimization.
Resumo:
The aim of this chapter is to promote an understanding of how different environments or settings within which students are asked or required to learn - such as large groups, small groups and laboratory and practice settings – have an impact on how they approach their learning and hence on the design and delivery of teaching. It provides an overview of underpinning principles and concepts before exploring their application in practice. The focus is on face-to-face teaching and learning.