955 resultados para Harmonic oscillators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modulational instability of a large-amplitude, linearly polarized electromagnetic wave propagating in an electron-positron plasma is considered, including the combined effect of relativistic mass variation of the plasma particles, harmonic generation, and the non-resonant, finite-frequency electrostatic density perturbations, all caused by the large-amplitude radiation field. The radiation from many strong sources, such as AGN and pulsars, has been observed to vary over a host of time-scales. It is possible that the extremely rapid variations in the non-thermal continuum of AGN, as well as in the non-thermal radio radiation from pulsars, can be accounted for by the modulational instabilities to which radiation may be subjected during its propagation out of the emission region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, beta(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I-2 omega,I-X,I-X/I-2 omega,I-Z,I-X and D' = I-2 omega,I-X,I-C/I-2 omega,I-Z,I-C in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, beta(HRS), and the value of macroscopic depolarization ratios, D and D', are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical beta(HRS), D and D' values as a function of the geometry of the complex. The calculated beta(HRS), D, and D' values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30 degrees is observed. Thus, we have demonstrated in this paper that the polarization resolved HRS technique along with theoretical calculations can unravel the geometry of CT complexes in solution. (C) 2011 American Institute of Physics. doi:10.1063/1.3514922]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those computed for the complexes of the individual ions. The bifurcated structures are found to be saddle points with an imaginary frequency corresponding to the rocking mode of water molecules. The solvent-shared ion pair complexes have high interaction energies. Trends in the internal force constant and harmonic frequency values are discussed in terms of ion-molecular and ion-pair molecular interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of the ground state of N anyons in an external magnetic field and a harmonic oscillator potential are computed in the large-N limit using the Thomas-Fermi approximation. The number of level crossings in the ground state as a function of the harmonic frequency, the strength and the direction of the magnetic field and N are also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A precise X-ray investigation is carried out to probe the lowest-order anharmonic contribution of the atomic potential of the germanium atom. A total number of 1052 reflections (h + k + l = 4n and 4n +/- 1) are precisely measured at room temperature using a spherical single crystal of germanium and using a Nonius CAD-4 X-ray diffractometer with crystal monochromatized MoKalpha radiation. A least-square refinement program is used to refine the harmonic and anharmonic thermal parameters of the crystal. The refinement gives beta(Ge) = (-0.749 +/- 1.79) x 10-(16) J nm-3 with B(Ge) = (0.528 +/- 0.004) x 10(-2) nm2. The reliability index (R) amounts to 1.71% for germanium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured the internal friction and speed of sound in several polycrystalline alloys, using compound torsional oscillators at frequencies between 60 kHz and 100 kHz and temperatures between 50 mK and 100 K. By combining these data with existing elastic and thermal data on similar alloys, we find that those alloys which can undergo diffusionsless phase transitions, such as Ti:Nb, Ti:V, or Zr:Nb in certain ranges of composition have glasslike excitations, since they have elastic properties which agree in magnitude and temperature dependence with those of amorphous solids. By contrast, crystalline continuous solution alloys, such as Nb:Ta, or alloys with diffusive phase transitions, such as high-pressure quenched Al94Si6, have the same elastic properties as are known for crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe three different families of metal oxides, viz., (i) protonated layered perovskites, (ii) framework phosphates of NASICON and KTiOPO4 (KTP) structures and (iii) layered and three-dimensional oxides in the H-V-W-O system, synthesized by 'soft-chemical' routes involving respectively ion-exchange, redox deinteracalation and acid-leaching from appropriate parent oxides. Oxides of the first family, HyA2B3O10(A = La/Ca; B = Ti/Nb), exhibit variable Bronsted acidity and intercalation behaviour that depend on the interlayer structure. V2(PO4)3 prepared by oxidative deintercalation from Na3V2(PO4)3 is a new host material exhibiting reductive insertion of lithium/hydrogen, while K0.5Nb0.5 M0.5OPO4(M = Ti, V) are novel KTP-like materials exhibiting second harmonic generation of 1064 nm radiation. HxVxW1-xO3 for x = 0.125 and 0.33 possessing alpha-MoO3 and hexagonal WO3 structures, prepared by acid-leaching of LiVWO6, represent functionalized oxide materials exhibiting redox and acid-base intercalation reactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft-chemical oxidation of KTiOPO4-like KM(0.5)(V)Ti(0.5)(III)OPO(4) (M = Nb, Ta) using chlorine in CHCl3 is accompanied by partial deintercalation of potassium, yielding K(0.5)MV(0.5)Ti(0.5)(IV)OPO(4) compounds which are new non-linear optical materials that exhibit efficient second-harmonic generation of 1064 nm radiation, as does KTiOPO4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent development of several organic materials with large nonlinear susceptibilities, high damage threshold and low melting points encouraged researchers to employ these materials in fiber form to efficiently couple diode laser pumps and obtain enhanced second harmonic generation (SHG). In this paper we report the growth of single crystal cored fibers of 4-nitro-4'-methylbenzylidene aniline, ethoxy methoxy chalcone and (-)2-((alpha) -methylbenzylamino)-5- nitropyridine by inverted Bridgman-Stockbarger technique. The fibers were grown in glass capillaries with varying internal diameters and lengths and were characterized using x-ray and polarizing microscope techniques. The propagation loss at 632.8 nm and 1300 nm were measured and SHG was studied using 1064 nm pump.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum cell models for delocalized electrons provide a unified approach to the large NLO responses of conjugated polymers and pi-pi* spectra of conjugated molecules. We discuss exact NLO coefficients of infinite chains with noninteracting pi-electrons and finite chains with molecular Coulomb interactions V(R) in order to compare exact and self-consistent-field results, to follow the evolution from molecular to polymeric responses, and to model vibronic contributions in third-harmonic-generation spectra. We relate polymer fluorescence to the alternation delta of transfer integrals t(1+/-delta) along the chain and discuss correlated excited states and energy thresholds of conjugated polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline samples of oxides of the general formula LiM(V)M(VI)O(6) (M(V) = Nb, Ta; M(VI) = Mo, W), crystallizing in a non-centrosymmetric (space group P (4) over bar 2(1)m) trirutile structure, exhibit second harmonic generation (SHG) of 1064 nm radiation with efficiencies 15-45 times that of alpha-quartz; interestingly, the SHG response is retained by the protonated derivatives HM(V)M(VI)O(6) . xH(2)O, and their n-alkylamine intercalates as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the problem of two anyons interacting through a simple harmonic potential or a Coulomb potential is supersymmetric. The supersymmetry operators map a theory described by statistics parameter θ to one described by π+θ. Thus fermions and bosons go into each other, while semions are supersymmetric by themselves. The simple harmonic problem has a Sp(4) symmetry for any value of θ which explains the energy degeneracies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a total of 1052 Bragg reflections of silicon, an X-ray investigation has been carried out to deduce the anharmonic thermal parameter beta, apart from the estimation of the harmonic contribution of the thermal vibration at room temperature. Reflections of type h + k + l = 4n, and 4n +/- 1 were used to estimate these parameters using MoKalpha radiation and a Nonius CAD-4 X-ray diffractometer. We obtain B(Si) = 0.451 (0.008) angstrom2 and beta(Si) = 0.279(2.630) eV angstrom-3 with R = 3.12%. The present B and beta values are in very good agreement with the earlier studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important tool in signal processing is the use of eigenvalue and singular value decompositions for extracting information from time-series/sensor array data. These tools are used in the so-called subspace methods that underlie solutions to the harmonic retrieval problem in time series and the directions-of-arrival (DOA) estimation problem in array processing. The subspace methods require the knowledge of eigenvectors of the underlying covariance matrix to estimate the parameters of interest. Eigenstructure estimation in signal processing has two important classes: (i) estimating the eigenstructure of the given covariance matrix and (ii) updating the eigenstructure estimates given the current estimate and new data. In this paper, we survey some algorithms for both these classes useful for harmonic retrieval and DOA estimation problems. We begin by surveying key results in the literature and then describe, in some detail, energy function minimization approaches that underlie a class of feedback neural networks. Our approaches estimate some or all of the eigenvectors corresponding to the repeated minimum eigenvalue and also multiple orthogonal eigenvectors corresponding to the ordered eigenvalues of the covariance matrix. Our presentation includes some supporting analysis and simulation results. We may point out here that eigensubspace estimation is a vast area and all aspects of this cannot be fully covered in a single paper. (C) 1995 Academic Press, Inc.