959 resultados para HLA E antigen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) and macrophages populate the intestinal lamina propria to initiate immune responses required for the maintenance of intestinal homeostasis. To investigate whether CX3CR1(+) phagocytes communicate with CD4 T cells during the development of transfer colitis, we established an antigen-driven colitis model induced by the adoptive transfer of DsRed OT-II cells in CX3CR1(GFP/+) × RAG(-/-) recipients challenged with Escherichia coli expressing ovalbumin (OVA) fused to a cyan fluorescent protein (CFP). After colonization of CX3CR1(GFP/+) × RAG(-/-) animals with red fluorescent E. coli pCherry-OVA, colonic CX3CR1(+) cells but not CD103(+) DCs phagocytosed E. coli pCherry-OVA. Degraded bacterial-derived antigens are transported by CD103(+) DCs to mesenteric lymph nodes (MLNs), where CD103(+) DCs prime naive T cells. In RAG(-/-) recipients reconstituted with OT II cells and gavaged with OVA-expressing E. coli, colonic CX3CR1(+) phagocytes are in close contact with CD4 T cells and presented bacterial-derived antigens to CD4 T cells to activate and expand effector T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Chronic HCV infection is a leading cause of liver-related morbidity globally. The innate and adaptive immune responses are thought to be important in determining viral outcomes. Polymorphisms associated with the IFNL3 (IL28B) gene are strongly associated with spontaneous clearance and treatment outcomes. OBJECTIVE This study investigates the importance of HLA genes in the context of genetic variation associated with the innate immune genes IFNL3 and KIR2DS3. DESIGN We assess the collective influence of HLA and innate immune genes on viral outcomes in an Irish cohort of women (n=319) who had been infected from a single source as well as a more heterogeneous cohort (Swiss Cohort, n=461). In the Irish cohort, a number of HLA alleles are associated with different outcomes, and the impact of IFNL3-linked polymorphisms is profound. RESULTS Logistic regression was performed on data from the Irish cohort, and indicates that the HLA-A*03 (OR 0.36 (0.15 to 0.89), p=0.027) -B*27 (OR 0.12 (0.03 to 0.45), p=<0.001), -DRB1*01:01 (OR 0.2 (0.07 to 0.61), p=0.005), -DRB1*04:01 (OR 0.31 (0.12 to 0.85, p=0.02) and the CC IFNL3 rs12979860 genotypes (OR 0.1 (0.04 to 0.23), p<0.001) are significantly associated with viral clearance. Furthermore, DQB1*02:01 (OR 4.2 (2.04 to 8.66), p=0.008), KIR2DS3 (OR 4.36 (1.62 to 11.74), p=0.004) and the rs12979860 IFNL3 'T' allele are associated with chronic infection. This study finds no interactive effect between IFNL3 and these Class I and II alleles in relation to viral clearance. There is a clear additive effect, however. Data from the Swiss cohort also confirms independent and additive effects of HLA Class I, II and IFNL3 genes in their prediction of viral outcome. CONCLUSIONS This data supports a critical role for the adaptive immune response in the control of HCV in concert with the innate immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ecology, "disease tolerance" is defined as an evolutionary strategy of hosts against pathogens, characterized by reduced or absent pathogenesis despite high pathogen load. To our knowledge, tolerance has to date not been quantified and disentangled from host resistance to disease in any clinically relevant human infection. Using data from the Swiss HIV Cohort Study, we investigated if there is variation in tolerance to HIV in humans and if this variation is associated with polymorphisms in the human genome. In particular, we tested for associations between tolerance and alleles of the Human Leukocyte Antigen (HLA) genes, the CC chemokine receptor 5 (CCR5), the age at which individuals were infected, and their sex. We found that HLA-B alleles associated with better HIV control do not confer tolerance. The slower disease progression associated with these alleles can be fully attributed to the extent of viral load reduction in carriers. However, we observed that tolerance significantly varies across HLA-B genotypes with a relative standard deviation of 34%. Furthermore, we found that HLA-B homozygotes are less tolerant than heterozygotes. Lastly, tolerance was observed to decrease with age, resulting in a 1.7-fold difference in disease progression between 20 and 60-y-old individuals with the same viral load. Thus, disease tolerance is a feature of infection with HIV, and the identification of the mechanisms involved may pave the way to a better understanding of pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein P29 is a potential serological marker for post-treatment monitoring of cystic echinococcosis (CE) especially in young patients. We now have demonstrated that P29 is encoded in the Echinococcus genus by a single gene consisting of 7 exons spanning 1.2 kb of DNA. Variability of the p29 gene at inter- and intra-species level was assessed with 50 cDNA and 280 genomic DNA clones isolated from different E. granulosus s.l. isolates (E. granulosus sensu stricto (G1), E. equinus (G4), E. ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E. canadensis (G10)) as well as four E. multilocularis isolates. Scarce interspecies polymorphism at the p29 locus was observed and affected predominantly E. granulosus s.s. (G1), where we identified two alleles (A1 and A2) coding for identical P29 proteins and yielding in three genotypes (A1/A1, A2/A2 and A1/A2). Genotypic frequencies expected under Hardy-Weinberg equilibrium revealed a high rate of heterozygosity (47%) that strongly supports the hypothesis that E. granulosus s.s. (G1) is predominantly outbreeding. Comparative sequence analyses of the complete p29 gene showed that phylogenetic relationships within the genus Echinococcus were in agreement with those of previous nuclear gene studies. At the protein level, the deduced P29 amino acid (AA) sequences exhibited a high level of conservation, ranging from 97.9% AA sequence identity among the whole E. granulosus s.l. group to 99.58% identity among E. multilocularis isolates. We showed that P29 proteins of these two species differ by three AA substitutions without implication for antigenicity. In Western-blot analyses, serum antibodies from a human CE patient infected with E. canadensis (G6) strongly reacted with recombinant P29 from E. granulosus s.s. (G1) (recEg(G1)P29). In the same line, human anti-Eg(G1)P29 antibodies bound to recEcnd(G6)P29. Thus, minor AA sequence variations appear not to impair the prognostic serological use of P29.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To systematically review evidence on genetic risk factors for carbamazepine (CBZ)-induced hypersensitivity reactions (HSRs) and provide practice recommendations addressing the key questions: (1) Should genetic testing for HLA-B*15:02 and HLA-A*31:01 be performed in patients with an indication for CBZ therapy to reduce the occurrence of CBZ-induced HSRs? (2) Are there subgroups of patients who may benefit more from genetic testing for HLA-B*15:02 or HLA-A*31:01 compared to others? (3) How should patients with an indication for CBZ therapy be managed based on their genetic test results? METHODS A systematic literature search was performed for HLA-B*15:02 and HLA-A*31:01 and their association with CBZ-induced HSRs. Evidence was critically appraised and clinical practice recommendations were developed based on expert group consensus. RESULTS Patients carrying HLA-B*15:02 are at strongly increased risk for CBZ-induced Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) in populations where HLA-B*15:02 is common, but not CBZ-induced hypersensitivity syndrome (HSS) or maculopapular exanthema (MPE). HLA-B*15:02-positive patients with CBZ-SJS/TEN have been reported from Asian countries only, including China, Thailand, Malaysia, and India. HLA-B*15:02 is rare among Caucasians or Japanese; no HLA-B*15:02-positive patients with CBZ-SJS/TEN have been reported so far in these groups. HLA-A*31:01-positive patients are at increased risk for CBZ-induced HSS and MPE, and possibly SJS/TEN and acute generalized exanthematous pustulosis (AGEP). This association has been shown in Caucasian, Japanese, Korean, Chinese, and patients of mixed origin; however, HLA-A*31:01 is common in most ethnic groups. Not all patients carrying either risk variant develop an HSR, resulting in a relatively low positive predictive value of the genetic tests. SIGNIFICANCE This review provides the latest update on genetic markers for CBZ HSRs, clinical practice recommendations as a basis for informed decision making regarding the use of HLA-B*15:02 and HLA-A*31:01 genetic testing in patients with an indication for CBZ therapy, and identifies knowledge gaps to guide future research. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.