845 resultados para HIV-INFECTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the efficacy of a hairpin ribozyme targeting the 5′ leader sequence of HIV-1 RNA in a transgenic model system. Primary spleen cells derived from transgenic or control mice were infected with HIV-1/MuLV pseudotype virus. A significantly reduced susceptibility to infection in ribozyme-expressing transgenic spleen cells (P = 0.01) was shown. Variation of transgene-expression levels between littermates revealed a dose response between ribozyme expression and viral resistance, with an estimated cut off value below 0.2 copies of hairpin ribozyme per cell. These findings open up possibilities for studies on ribozyme efficacy and anti-HIV-1 gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally thought that an effective vaccine to prevent HIV-1 infection should elicit both strong neutralizing antibody and cytotoxic T lymphocyte responses. We recently demonstrated that potent, boostable, long-lived HIV-1 envelope (Env)-specific cytotoxic T lymphocyte responses can be elicited in rhesus monkeys using plasmid-encoded HIV-1 env DNA as the immunogen. In the present study, we show that the addition of HIV-1 Env protein to this regimen as a boosting immunogen generates a high titer neutralizing antibody response in this nonhuman primate species. Moreover, we demonstrate in a pilot study that immunization with HIV-1 env DNA (multiple doses) followed by a final immunization with HIV-1 env DNA plus HIV-1 Env protein (env gene from HXBc2 clone of HIV IIIB; Env protein from parental HIV IIIB) completely protects monkeys from infection after i.v. challenge with a chimeric virus expressing HIV-1 env (HXBc2) on a simian immmunodeficiency virusmac backbone (SHIV-HXBc2). The potent immunity and protection seen in these pilot experiments suggest that a DNA prime/DNA plus protein boost regimen warrants active investigation as a vaccine strategy to prevent HIV-1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific mechanisms underlying the varied susceptibility of HIV-infected (HIV+) individuals to opportunistic infections (OI) are still incompletely understood. One hypothesis is that quantitative differences in specific T cell responses to a colonizing organism determine the development of an AIDS-defining OI. We evaluated this hypothesis for herpes simplex virus (HSV) infection, a common OI in HIV+ patients. Using limiting dilution analyses, the frequency of HSV-specific CD8+ cytotoxic T lymphocyte precursors (pCTL) and proliferative precursors were quantitated in peripheral blood mononuclear cells from 20 patients coinfected with HIV and HSV-2. The frequency of HSV-specific CD8+ pCTL in HSV+HIV+ individuals was significantly lower than in HSV+HIV− individuals (1 in 77,000 vs. 1 in 6,000, P = .0005) and was not different than in HSV-HIV− individuals (1 in 100,000, P = .24). HIV+ patients who suffered more severe genital herpes recurrences had significantly lower HSV-specific CD8+ pCTL frequencies than those patients with mild recurrences (1 in 170,000 vs. 1 in 26,000, P = .03). In contrast, no significant difference was seen in proliferative precursor frequencies between those patients with mild vs. severe genital herpes (1 in 3,800 vs. 1 in 6,600, P > .5). Quantitative differences in pCTL frequency to HSV appear to be the most important host factor influencing the frequency and severity of HSV reactivation in HIV+ patients. Studies to reconstitute such immunity, especially in people with acyclovir-resistant HSV, appear warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing evidence suggests that HIV-1-specific cytotoxic T lymphocytes (CTLs) are a key host immune response to HIV-1 infection. Generation of CTL responses for prevention or therapy of HIV-1 infection has several intrinsic technical barriers such as antigen expression and presentation, the varying HLA restrictions between different individuals, and the potential for viral escape by sequence variation or surface molecule alteration on infected cells. A strategy to circumvent these limitations is the construction of a chimeric T cell receptor containing human CD4 or HIV-1-specific Ig sequences linked to the signaling domain of the T cell receptor ζ chain (universal T cell receptor). CD8+ CTLs transduced with this universal receptor can then bind and lyse infected cells that express surface HIV-1 gp120. We evaluated the ability of universal-receptor-bearing CD8+ cells from a seronegative donor to lyse acutely infected cells and inhibit HIV-1 replication in vitro. The kinetics of lysis and efficiency of inhibition were comparable to that of naturally occurring HIV-1-specific CTL clones isolated from infected individuals. Further study will be required to determine the utility of these cells as a therapeutic strategy in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HIV-1 Tat protein is a potent chemoattractant for monocytes. We observed that Tat shows conserved amino acids corresponding to critical sequences of the chemokines, a family of molecules known for their potent ability to attract monocytes. Synthetic Tat and a peptide (CysL24–51) encompassing the “chemokine-like” region of Tat induced a rapid and transient Ca2+ influx in monocytes and macrophages, analogous to β-chemokines. Both monocyte migration and Ca2+ mobilization were pertussis toxin sensitive and cholera toxin insensitive. Cross-desensitization studies indicated that Tat shares receptors with MCP-1, MCP-3, and eotaxin. Tat was able to displace binding of β-chemokines from the β-chemokine receptors CCR2 and CCR3, but not CCR1, CCR4, and CCR5. Direct receptor binding experiments with the CysL24–51 peptide confirmed binding to cells transfected with CCR2 and CCR3. HIV-1 Tat appears to mimic β-chemokine features, which may serve to locally recruit chemokine receptor-expressing monocytes/macrophages toward HIV producing cells and facilitate activation and infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein–protein interacting surfaces are usually large and intricate, making the rational design of small mimetics of these interfaces a daunting problem. On the basis of a structural similarity between the CDR2-like loop of CD4 and the β-hairpin region of a short scorpion toxin, scyllatoxin, we transferred the side chains of nine residues of CD4, central in the binding to HIV-1 envelope glycoprotein (gp120), to a structurally homologous region of the scorpion toxin scaffold. In competition experiments, the resulting 27-amino acid miniprotein inhibited binding of CD4 to gp120 with a 40 μM IC50. Structural analysis by NMR showed that both the backbone of the chimeric β-hairpin and the introduced side chains adopted conformations similar to those of the parent CD4. Systematic single mutations suggested that most CD4 residues from the CDR2-like loop were reproduced in the miniprotein, including the critical Phe-43. The structural and functional analysis performed suggested five additional mutations that, once incorporated in the miniprotein, increased its affinity for gp120 by 100-fold to an IC50 of 0.1–1.0 μM, depending on viral strains. The resulting mini-CD4 inhibited infection of CD4+ cells by different virus isolates. Thus, core regions of large protein–protein interfaces can be reproduced in miniprotein scaffolds, offering possibilities for the development of inhibitors of protein–protein interactions that may represent useful tools in biology and in drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although highly active antiretroviral therapy (HAART) in the form of triple combinations of drugs including protease inhibitors can reduce the plasma viral load of some HIV-1-infected individuals to undetectable levels, it is unclear what the effects of these regimens are on latently infected CD4+ T cells and what role these cells play in the persistence of HIV-1 infection in individuals receiving such treatment. The present study demonstrates that highly purified CD4+ T cells from 13 of 13 patients receiving HAART with an average treatment time of 10 months and with undetectable (<500 copies HIV RNA/ml) plasma viremia by a commonly used bDNA assay carried integrated proviral DNA and were capable of producing infectious virus upon cellular activation in vitro. Phenotypic analysis of HIV-1 produced by activation of latently infected CD4+ T cells revealed the presence in some patients of syncytium-inducing virus. In addition, the presence of unintegrated HIV-1 DNA in infected resting CD4+ T cells from patients receiving HAART, even those with undetectable plasma viremia, suggests persistent active virus replication in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use mathematical models to study the relationship between HIV and the immune system during the natural course of infection and in the context of different antiviral treatment regimes. The models suggest that an efficient cytotoxic T lymphocyte (CTL) memory response is required to control the virus. We define CTL memory as long-term persistence of CTL precursors in the absence of antigen. Infection and depletion of CD4+ T helper cells interfere with CTL memory generation, resulting in persistent viral replication and disease progression. We find that antiviral drug therapy during primary infection can enable the development of CTL memory. In chronically infected patients, specific treatment schedules, either including deliberate drug holidays or antigenic boosts of the immune system, can lead to a re-establishment of CTL memory. Whether such treatment regimes would lead to long-term immunologic control deserves investigation under carefully controlled conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Follicular dendritic cells (FDC) provide a reservoir for HIV type 1 (HIV-1) that may reignite infection if highly active antiretroviral therapy (HAART) is withdrawn before virus on FDC is cleared. To estimate the treatment time required to eliminate HIV-1 on FDC, we develop deterministic and stochastic models for the reversible binding of HIV-1 to FDC via ligand–receptor interactions and examine the consequences of reducing the virus available for binding to FDC. Analysis of these models shows that the rate at which HIV-1 dissociates from FDC during HAART is biphasic, with an initial period of rapid decay followed by a period of slower exponential decay. The speed of the slower second stage of dissociation and the treatment time required to eradicate the FDC reservoir of HIV-1 are insensitive to the number of virions bound and their degree of attachment to FDC before treatment. In contrast, the expected time required for dissociation of an individual virion from FDC varies sensitively with the number of ligands attached to the virion that are available to interact with receptors on FDC. Although most virions may dissociate from FDC on the time scale of days to weeks, virions coupled to a higher-than-average number of ligands may persist on FDC for years. This result suggests that HAART may not be able to clear all HIV-1 trapped on FDC and that, even if clearance is possible, years of treatment will be required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying the immunologic and virologic consequences of discontinuing antiretroviral therapy in HIV-infected patients is of major importance in developing long-term treatment strategies for patients with HIV-1 infection. We designed a trial to characterize these parameters after interruption of highly active antiretroviral therapy (HAART) in patients who had maintained prolonged viral suppression on antiretroviral drugs. Eighteen patients with CD4+ T cell counts ≥ 350 cells/μl and viral load below the limits of detection for ≥1 year while on HAART were enrolled prospectively in a trial in which HAART was discontinued. Twelve of these patients had received prior IL-2 therapy and had low frequencies of resting, latently infected CD4 cells. Viral load relapse to >50 copies/ml occurred in all 18 patients independent of prior IL-2 treatment, beginning most commonly during weeks 2–3 after cessation of HAART. The mean relapse rate constant was 0.45 (0.20 log10 copies) day−1, which was very similar to the mean viral clearance rate constant after drug resumption of 0.35 (0.15 log10 copies) day−1 (P = 0.28). One patient experienced a relapse delay to week 7. All patients except one experienced a relapse burden to >5,000 RNA copies/ml. Ex vivo labeling with BrdUrd showed that CD4 and CD8 cell turnover increased after withdrawal of HAART and correlated with viral load whereas lymphocyte turnover decreased after reinitiation of drug treatment. Virologic relapse occurs rapidly in patients who discontinue suppressive drug therapy, even in patients with a markedly diminished pool of resting, latently infected CD4+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection by HIV-1 involves the fusion of viral and cellular membranes with subsequent transfer of viral genetic material into the cell. The HIV-1 envelope glycoprotein that mediates fusion consists of the surface subunit gp120 and the transmembrane subunit gp41. gp120 directs virion attachment to the cell–surface receptors, and gp41 then promotes viral–cell membrane fusion. A soluble, α-helical, trimeric complex within gp41 composed of N-terminal and C-terminal extraviral segments has been proposed to represent the core of the fusion-active conformation of the HIV-1 envelope. A thermostable subdomain denoted N34(L6)C28 can be formed by the N-34 and C-28 peptides connected by a flexible linker in place of the disulfide-bonded loop region. Three-dimensional structure of N34(L6)C28 reveals that three molecules fold into a six-stranded helical bundle. Three N-terminal helices within the bundle form a central, parallel, trimeric coiled coil, whereas three C-terminal helices pack in the reverse direction into three hydrophobic grooves on the surface of the N-terminal trimer. This thermostable subdomain displays the salient features of the core structure of the isolated gp41 subunit and thus provides a possible target for therapeutics designed selectively to block HIV-1 entry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain capillary endothelial cells (BCECs) are targets of CD4-independent infection by HIV-1 and simian immunodeficiency virus (SIV) strains in vitro and in vivo. Infection of BCECs may provide a portal of entry for the virus into the central nervous system and could disrupt blood–brain barrier function, contributing to the development of AIDS dementia. We found that rhesus macaque BCECs express chemokine receptors involved in HIV and SIV entry including CCR5, CCR3, CXCR4, and STRL33, but not CCR2b, GPR1, or GPR15. Infection of BCECs by the neurovirulent strain SIV/17E-Fr was completely inhibited by aminooxypentane regulation upon activation, normal T cell expression and secretion in the presence or absence of ligands, but not by eotaxin or antibodies to CD4. We found that the envelope (env) proteins from SIV/17E-Fr and several additional SIV strains mediated cell–cell fusion and virus infection with CD4-negative, CCR5-positive cells. In contrast, fusion with cells expressing the coreceptors STRL33, GPR1, and GPR15 was CD4-dependent. These results show that CCR5 can serve as a primary receptor for SIV in BCECs and suggest a possible CD4-independent mechanism for blood–brain barrier disruption and viral entry into the central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV-1 entry into CD4+ cells requires the sequential interactions of the viral envelope glycoproteins with CD4 and a coreceptor such as the chemokine receptors CCR5 and CXCR4. A plausible approach to blocking this process is to use small molecule antagonists of coreceptor function. One such inhibitor has been described for CCR5: the TAK-779 molecule. To facilitate the further development of entry inhibitors as antiviral drugs, we have explored how TAK-779 acts to prevent HIV-1 infection, and we have mapped its site of interaction with CCR5. We find that TAK-779 inhibits HIV-1 replication at the membrane fusion stage by blocking the interaction of the viral surface glycoprotein gp120 with CCR5. We could identify no amino acid substitutions within the extracellular domain of CCR5 that affected the antiviral action of TAK-779. However, alanine scanning mutagenesis of the transmembrane domains revealed that the binding site for TAK-779 on CCR5 is located near the extracellular surface of the receptor, within a cavity formed between transmembrane helices 1, 2, 3, and 7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary HIV-1 isolates were evaluated for their sensitivity to inhibition by β-chemokines RANTES (regulated upon activation, normal T-cell expressed and secreted), macrophage inflammatory protein 1α (MIP-1α), and MIP-1β. Virus isolates of both nonsyncytium-inducing (NSI) and syncytium-inducing (SI) biological phenotypes recovered from patients at various stages of HIV-1 infection were assessed, and the results indicated that only the isolates with the NSI phenotype were substantially inhibited by the β-chemokines. More important to note, these data demonstrate that resistance to inhibition by β-chemokines RANTES, MIP-1α, and MIP-1β is not restricted to T cell line-adapted SI isolates but is also a consistent property among primary SI isolates. Analysis of isolates obtained sequentially from infected individuals in whom viruses shifted from NSI to SI phenotype during clinical progression exhibited a parallel loss of sensitivity to β-chemokines. Loss of virus sensitivity to inhibition by β-chemokines RANTES, MIP-1α, and MIP-1β was furthermore associated with changes in the third variable (V3) region amino acid residues previously described to correlate with a shift of virus phenotype from NSI to SI. Of interest, an intermediate V3 genotype correlated with a partial inhibition by the β-chemokines. In addition, we also identified viruses sensitive to RANTES, MIP-1α, and MIP-1β of NSI phenotype that were isolated from individuals with AIDS manifestations, indicating that loss of sensitivity to β-chemokine inhibition and shift in viral phenotype are not necessarily prerequisites for the pathogenesis of HIV-1 infection.