959 resultados para Hépatite autoimmune


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: It has been proposed that the innate immune system plays a central role in driving the autoimmune T-cell cascade leading to psoriasis; however, there is no direct evidence for this. OBSERVATIONS: We observed aggravation and spreading of a psoriatic plaque when treated topically with the toll-like receptor (TLR) 7 agonist imiquimod. The exacerbation of psoriasis was accompanied by a massive induction of lesional type I interferon activity, detected by MxA expression after imiquimod therapy. Since imiquimod induces large amounts of type I interferon production from TLR7-expressing plasmacytoid dendritic cell precursors (PDCs), the natural interferon-producing cells of the peripheral blood, we asked whether PDCs are present in psoriatic skin. We identified high numbers of PDCs in psoriatic skin lesions (up to 16% of the total dermal infiltrate) based on their coexpression of BDCA2 and CD123. By contrast, PDCs were present at very low levels in atopic dermatitis and not detected in normal human skin. CONCLUSIONS: This study shows that psoriasis can be driven by the innate immune system through TLR ligation. Furthermore, our finding that large numbers of PDCs infiltrate psoriatic skin suggests a role of lesional PDCs as type I interferon-producing targets for the TLR7 agonist imiquimod.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pre-existing psychological factors can strongly influence coping with type 1 diabetes mellitus and interfere with self-monitoring. Psychiatric disorders seem to be positively associated with poor metabolic control. We present a case of extreme compulsive blood testing due to obsessive fear of hypoglycemia in an adolescent with type 1 diabetes mellitus. Case report: Type 1 diabetes mellitus (anti GAD-antibodies 2624 U/l, norm < 9.5) was diagnosed in a boy aged 14.3 years [170 cm (+ 0.93 SDS), weight 50.5 kg (+ 0.05 SDS)]. Laboratory work-up showed no evidence for other autoimmune disease. Family and past medical history were unremarkable. Growth and developmental milestones were normal. Insulin-analog based basal-bolus regime was initiated, associated to standard diabetic education. Routine psychological evaluation performed at the onset of diabetes revealed intermittent anxiety and obsessivecompulsive traits. Accordingly, a close psychiatric follow-up was initiated for the patient and his family. An adequate metabolic control (HbA1c drop from >14 to 8%) was achieved within 3 months, attributed to residual -cell function. In the following 6 months, HbA1c rose unexpectedly despite seemingly adequate adaptations of insulin doses. Obsessive fear of hypoglycemia leading to a severe compulsive behavior developed progressively with as many as 68 glycemia measurements per day (mean over 1 week). The patient reported that he could not bear leaving home with glycemia < 15 mmol/l, ending up with school eviction and severe intra-familial conflict. Despite intensive psychiatric outpatient support, HbA1c rose rapidly to >14% with glycemia-testing reaching peaks of 120 tests/day. The situation could only be discontinued through psychiatric hospitalization with intensive behavioral training. As a result, adequate metabolic balance was restored (HbA1c value: 7.1 %) with acceptable 10-15 daily glycemia measurements. Discussion: The association of overt psychiatric disorders to type 1 diabetes mellitus is very rare in the pediatric age group. It can lead to a pathological behavior with uncontrolled diabetes. Such exceptional situations require long-term admissions with specialized psychiatric care. Slow acceptation of a "less is better" principle in glycemia testing and amelioration of metabolic control are difficult to achieve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systemic administration of cyclosporine A (CsA) is commonly used in the treatment of local ophthalmic conditions involving cytokines, such as corneal graft rejection, autoimmune uveitis and dry eye syndrome. Local administration is expected to avoid the various side effects associated with systemic delivery. However, the currently available systems using oils to deliver CsA topically are poorly tolerated and provide a low bioavailability. These difficulties may be overcome through formulations aimed at improving CsA water solubility (e.g. cyclodextrins), or those designed to facilitate tissue drug penetration using penetration enhancers. The use of colloidal carriers (micelles, emulsions, liposomes and nanoparticles) as well as the approach using hydrosoluble prodrugs of CsA have shown promising results. Solid devices such as shields and particles of collagen have been investigated to enhance retention time on the eye surface. Some of these topical formulations have shown efficacy in the treatment of extraocular diseases but were inefficient at reaching intraocular targets. Microspheres, implants and liposomes have been developed to be directly administered subconjunctivally or intravitreally in order to enhance CsA concentration in the vitreous. Although progress has been made, there is still room for improvement in CsA ocular application, as none of these formulations is ideal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis incidence is low in Switzer land. We report here on a Swiss-born toddler. Tuberculosis manifested with a fever of unknown origin, mimicking an inflammatory or autoimmune disorder triggering a high dose of corticosteroid treatment. The disease went unrecognized for several weeks until development of a miliary tuberculosis with advanced central nervous system involvement. This case highlights the difficulties encountered in diagnosing tuberculosis and in identifying the origin of this case. It reminds us that this disease must never be forgotten when facing a child with persistent fever who must be screened for, before starting immunosuppressive therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: La prévalence de la «non-alcoholic fatty liver disease (NAFLD)» dans les pays industrialisés augment de manière exponentielle. La NAFLD se développe d'une simple stéatose hépatique jusqu'à l'hépatite, puis à la cirrhose. De plus, la stéatose hépatique est fréquemment accompagnée par une résistance à l'insuline, une des causes principales du diabète. Les lipides intermédiaires, tels que céramides et diacylglycérols, ont été décrits comme induisant la résistance à l'insuline. Cependant, nous avons démontré dans notre modèle de stéatose hépatique, que les souris présentant une invalidation de la protéine «microsomal triglyceride transfer protein» (Mtpp) au niveau hépatique, ne développent pas de résistance à l'insuline. Ceci suggère fortement l'existence d'autres mécanismes susceptibles d'induire la résistance à l'insuline. Résultats: Grâce à une analyse de Microarray, nous avons observé une augmentation de l'expression des gènes «cell-death inducing DFFA-like effector c (CIDEC)», «lipid storage droplet protein 5 (LSDP5)» et «Bernardinelli-Seip congenital lipodystrophy 2 homolog (Seipin)» dans le foie des souris Mttp. Ces gènes ont récemment été identifiés comme des protéines localisées autour des gouttelettes lipidiques. Nous avons également constaté que la souris Mttp développe plutôt une microstéatose (petites gouttelettes lipidiques) qu'une macrostéatose qui est normalement observée chez les patients avec NAFLD. Nous avons étudié l'expression des gènes associés aux gouttelettes lipidiques chez les patients obèses avec stéatose hépatique, avec ou sans résistance à l'insuline. Comparés aux sujets sains sans stéatose hépatique, les patients avec la stéatose ont une expression significativement plus élevée. De manière intéressante, les patients avec résistance à l'insuline ont une diminution de ces expressions. Conclusion : Ces données suggèrent que les gènes des gouttelettes lipidiques sont impliqués dans le développement de la stéatose hépatique chez l'homme et peut-être contribue à la mise en place de la résistance à l'insuline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T helper cell (Th) functions are crucial for proper immune defence against various intra- and extracellular pathogens. According to the specific immune responses, Th cells can be classified into subtypes, Th1 and Th2 cells being the most frequently characterized classes. Th1 and Th2 cells interact with other immune cells by regulating their functions with specific cytokine production. IFN, IL-2 and TNF- are the cytokines predominantly produced by Th1 cells whereas Th2 cells produce Th2-type cytokines, such as IL-4, IL-5 and IL-13. Upon TCR activation and in the presence of polarizing cytokines, Th cells differentiate into effector subtypes from a common precursor cell. IFN and IL-12 are the predominant Th1 polarizing cytokines whereas IL-4 directs Th2 polarization. The cytokines mediate their effects through specific receptor signalling. The differentiation process is complex, involving various signalling molecules and routes, as well as functions of the specific transcription factors. The functions of the Th1/Th2 cells are tightly regulated; however, knowledge on human Th cell differentiation is, as yet, fairly poor. The susceptibility for many immune-mediated disorders often originates from disturbed Th cell responses. Thus, research is needed for defining the molecular mechanisms involved in the differentiation and balanced functions of the Th cells. Importantly, the new information obtained will be crucial for a better understanding of the pathogenesis of immune-mediated disorders, such as asthma or autoimmune diseases. In the first subproject of this thesis, the role of genetic polymorphisms in the human STAT6, GATA3 and STAT4 genes were investigated for asthma or atopy susceptibility in Finnish asthma families by association analysis. These genes code for key transcription factors regulating Th cell differentiation. The study resulted in the identification of a GATA3 haplotype that associated with asthma and related traits (high serum IgE level). In the second subproject, an optimized method for human primary T cell transfection and enrichment was established. The method can be utilized for functional studies for the selected genes of interest. The method was also utilized in the third subproject, which aimed at the identification of novel genes involved in early human Th cell polarization (0-48h) using genome-wide oligonucleotide arrays. As a result, numerous genes and ESTs with known or unknown functions were identified in the study. Using an shRNA knockdown approach, a panel of novel IL-4/STAT6 regulated genes were identified in the functional studies of the genes. Moreover, one of the genes, NDFIP2, with a previously uncharacterized role in the human Th differentiation, was observed to promote IFN production of the differentiated Th1 cells. Taken together, the results obtained have revealed potential new relevant candidate genes serving as a basis for further studies characterizing the detailed networks involved in the human Th cell differentiation as well as in the genetic susceptibility of Th-mediated immune disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME - FRANÇAISRésuméDans ce travail de thèse, l'importance de la pharmacogénétique des traitements antiviraux a été évaluée en déterminant, au moyen de trois différentes approches, l'impact de variations génétiques sur la pharmacocinétique de deux traitements antirétroviraux (à savoir l'efavirenz et le lopinavir) ainsi que sur la capacité de pouvoir éliminer le virus de l'hépatite C de façon naturelle ou suite à un traitement médicamenteux.L'influence des variations génétiques sur les taux plasmatiques de l'efavirenz et de ses métabolites primaires a été évaluée par l'analyse d'un seul gène candidat : le cytochrome P450 (CYP) 2A6, impliqué dans une voie métabolique accessoire de l'efavirenz. Cette étude a permis de démontrer que le génotype du CYP2A6 devient cliniquement déterminant en l'absence de fonction du CYP2B6, impliqué dans la voie métabolique principale, et que la perte simultanée des voies métaboliques principales et accessoires entraine une augmen¬tation du risque d'interruption du traitement, soulignant la valeur prédictive du génotypage.L'influence de la génétique sur la clairance du lopinavir a été évaluée par l'analyse à grande échelle de gènes candidats, à savoir les gènes potentiellement impliqués dans l'absorption, le métabolisme, la distribution et l'élimination d'un médicament. Cette étude a permis l'identification de 4 polymorphismes, dans des transporteurs et des enzymes métaboliques, associés à la clairance du lopinavir et expliquant 5% de la variabilité inter¬individuelle de ce phénotype.L'influence de la génétique sur la capacité d'éliminer le virus de l'hépatite C, de façon naturelle ou à la suite d'un traitement, a été évaluée par l'analyse du génome entier. Cette étude a permis l'identification d'un polymorphisme situé à proximité de l'interféron-X3. Quatre variations génétiques potentiellement causales ont ensuite pu être identifiées par reséquencage. Finalement, la contribution nette de ce gène sur l'élimination du virus a pu être évaluée dans une cohorte infectée par une seule et même source, permettant ainsi de contrôler l'effet de la diversité virale, du genre et de la présence de co-infections.Cette thèse a permis de mettre en évidence les diverses méthodes disponibles pour la recherche en pharmacogénétique, ainsi que l'importance du reséquencage pour l'identification de variations génétiques causales.SUMMARY - ENGLISHSummaryIn this thesis work the relevance of pharmacogenetics of antiviral treatment has been assessed by investigating, through three different approaches, the impact of host genetic variation on antiretroviral drug disposition (namely efavirenz and lopinavir) and on natural or treatment-induced clearance of hepatitis C virus.The influence of host genetic variation on efavirenz and its primary metabolite plasma levels was assessed by single candidate gene approach, through comprehensive analysis of cytochrome P450 (CYP) 2A6 - involved in efavirenz accessory metabolic pathway. The study could demonstrate that CYP2A6 genotype became increasingly relevant in the setting of limited CYP2B6 function - involved in efavirenz main metabolic pathway - and that individuals with both main and accessory metabolic pathways impaired were at higher risk for treatment discontinuation, overall emphasizing the predictive power of genotyping.The influence of host genetic variation on lopinavir clearance was assessed by large scale candidate gene approach, through analysis of genes involved in the absorption, distribution, metabolism and elimination. The study identified four genetic variants in drug transporters and metabolizing enzymes that explained 5% of the interindividual variability in lopinavir clearance.The influence of host genetic variation on hepatitis C virus (HCV) natural or treatment- induced clearance was assessed through genome-wide association study approach. This study identified an intergenic polymorphism, part of a linkage disequilibrium block encompassing the interferon-3 gene, as highly associated with treatment-induced and spontaneous HCV clearance. Resequencing and recombinant mapping lead to the identification of four potentially causal genetic variants. Finally, we could assess the net contribution of genetic variants in interferon-3 to clearance by controlling for viral diversity, gender and co-infection status in a single source infected cohort.This thesis highlights the various genetic tools available to pharmacogenetic discovery (candidate gene, pathway or and genome-wide approaches), and the importance of resequencing for mapping of causal variants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altered bone micro-architecture is an important factor in accounting for fragility fractures. Until recently, it has not been possible to gain information about skeletal microstructure in a way that is clinically feasible. Bone biopsy is essentially a research tool. High-resolution peripheral Quantitative Computed Tomography, while non-invasive, is available only sparsely throughout the world. The trabecular bone score (TBS) is an imaging technology adapted directly from the Dual Energy X-Ray Absorptiometry (DXA) image of the lumbar spine. Thus, it is potentially readily and widely available. In recent years, a large number of studies have demonstrated that TBS is significantly associated with direct measurements of bone micro-architecture, predicts current and future fragility fractures in primary osteoporosis, and may be a useful adjunct to BMD for fracture detection and prediction. In this review, we summarize its potential utility in secondary causes of osteoporosis. In some situations, like glucocorticoid-induced osteoporosis and in diabetes mellitus, the TBS appears to out-perform DXA. It also has apparent value in numerous other disorders associated with diminished bone health, including primary hyperparathyroidism, androgen-deficiency, hormone-receptor positive breast cancer treatment, chronic kidney disease, hemochromatosis, and autoimmune disorders like rheumatoid arthritis. Further research is both needed and warranted to more clearly establish the role of TBS in these and other disorders that adversely affect bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoantibodies are defined as antibodies directed against self antigens, i.e., against a normal antigenic endogenous tissue constituent. They can be the immediate cause of the neurological syndrome or be detected as an epiphenomenon of the pathogenic process. Autoantibodies are often considered useful biomarkers for the improvement of diagnostic accuracy, for the staging of disease progression or for the follow up of a biological response to a therapeutic intervention. The purpose of this article is to review the autoantibodies that are available to investigate immune-mediated neurological conditions. The detection of some of these autoantibodies may help the clinician to establish a definite diagnosis which may further facilitate the therapeutic decision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type I interferon (IFN) is a common therapy for autoimmune and inflammatory disorders, yet the mechanisms of action are largely unknown. Here we showed that type I IFN inhibited interleukin-1 (IL-1) production through two distinct mechanisms. Type I IFN signaling, via the STAT1 transcription factor, repressed the activity of the NLRP1 and NLRP3 inflammasomes, thereby suppressing caspase-1-dependent IL-1β maturation. In addition, type I IFN induced IL-10 in a STAT1-dependent manner; autocrine IL-10 then signaled via STAT3 to reduce the abundance of pro-IL-1α and pro-IL-1β. In vivo, poly(I:C)-induced type I IFN diminished IL-1β production in response to alum and Candida albicans, thus increasing susceptibility to this fungal pathogen. Importantly, monocytes from multiple sclerosis patients undergoing IFN-β treatment produced substantially less IL-1β than monocytes derived from healthy donors. Our findings may thus explain the effectiveness of type I IFN in the treatment of inflammatory diseases but also the observed "weakening" of the immune system after viral infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most efficient antigen presenting cells, they provide co-stimulation, are able to secrete various proinflammatory cytokines and therefore play a pivotal role in shaping adaptive immune responses. Moreover, they are important for the promotion and maintenance of central and peripheral tolerance through several mechanisms like the induction of anergy or apoptosis in effector T cells or by promoting regulatory T cells. The murine CD8α+ (MuTu) dendritic cell line was previously derived and described in our laboratory. The MuTu cell line has been shown to maintain phenotypical and functional characteristics of endogenous CD8α+ DCs. They are able to cross-present exogenous antigens to CD8+ T cells and produce interleukin (IL-) 12 upon engagement of Toll like receptors. The cell line constitutes an infinite source of homogenous, phenotypically well-defined dendritic cells. This allows us to investigate the role and potential of specific molecules in the induction as well as regulation of immune responses by DCs in a rational and standardized way. In a first project the MuTu dendritic cell line was transduced in order to stably express the immunosuppressive molecules IL-10, IL-35 or the active form of TGF-β (termed IL-10+DC, IL-35+DC or actTGFβ+DC). We investigated the capability of these potentially suppressive or tolerogenic dendritic cell lines to induce immune tolerance and explore the mechanisms behind tolerance induction. The expression of TGF-β by the DC line did not affect the phenotype of the DCs itself. In contrast, IL-10+ and IL-35+DCs were found to exhibit lower expression of co-stimulatory molecules and MHC class I and II, as well as reduced secretion of pro-inflammatory cytokines upon activation. In vitro co-culture with IL-35+, IL10+ or active TGFβ+ DCs interfered with function and proliferation of CD4+ and CD8+ T cells. Furthermore, IL-35 and active TGF-β expressing DC lines induced regulatory phenotype on CD4+ T cells in vitro without or with expression of Foxp3, respectively. In different murine cancer models, vaccination with IL-35 or active TGF-β expressing DCs resulted in faster tumor growth. Interestingly, accelerated tumor growth could be observed when IL-35-expressing DCs were injected into T cell-deficient RAG-/- mice. IL-10expressing DCs however, were found to rather delay tumor growth. Besides the mentioned autocrine effects of IL-35 expression on the DC line itself, we surprisingly observed that the expression of IL-35 or the addition of IL-35 containing medium enhances neutrophil survival and induces proliferation of endothelial cells. Our findings indicate that the cytokine IL-35 might not only be a potent regulator of adaptive immune responses, but it also implies IL-35 to mediate diverse effects on an array of cellular targets. This abilities make IL-35 a promising target molecule not only for the treatment of auto-inflammatory disease but also to improve anti-cancer immunotherapies. Indeed, by applying active TGFβ+ in murine autoimmune encephalitis we were able to completely inhibit the development of the disease, whereas IL-35+DCs reduced disease incidence and severity. Furthermore, the preventive transfer of IL-35+DCs delayed rejection of transplanted skin to the same extend as the combination of IL-10/actTGF-β expressing DCs. Thus, the expression of a single tolerogenic molecule can be sufficient to interfere with the adequate activation and function of dendritic cells and of co-cultured T lymphocytes. The respective mechanisms of tolerance induction seem to be different for each of the investigated molecule. The application of a combination of multiple tolerogenic molecules might therefore evoke synergistic effects in order to overcome (auto-) immunity. In a second project we tried to improve the immunogenicity of dendritic cell-based cancer vaccines using two different approaches. First, the C57BL/6 derived MuTu dendritic cell line was genetically modified in order to express the MHC class I molecule H-2Kd. We hypothesized that the expression of BALB/c specific MHC class I haplotype (H-2Kd) should allow the priming of tumor-specific CD8+ T cells by the otherwise allogeneic dendritic cells. At the same time, the transfer of these H-2Kd+ DCs into BALB/c mice was thought to evoke a strong inflammatory environment that might act as an "adjuvant", helping to overcome tumor induced immune suppression. Using this so called "semi-allogeneic" vaccination approach, we could demonstrate that the delivery of tumor lysate pulsed H-2Kd+ DCs significantly delayed tumor growth when compared to autologous or allogeneic vaccination. However, we were not able to coherently elucidate the cellular mechanisms underlying the observed effect. Second, we generated MuTu DC lines which stably express the pro-inflammatory cytokines IL-2, IL-12 or IL-15. We investigated whether the combination of DC vaccination and local delivery of pro-inflammatory cytokines might enhance tumor specific T cell responses. Indeed, we observed an enhanced T cell proliferation and activation when they were cocultured in vitro with IL-12 or IL-2-expressing DCs. But unfortunately we could not observe a beneficial or even synergistic impact on tumor development when cytokine delivery was combined with semi-allogeneic DC vaccination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by a loss of tolerance to multiple endogenous antigens. SLE etiology remains largely unknown, despite recent insight into the immunopathogenesis of the disease. T cells are important in the development of the disease by amplifying the immune response and contributing to organ damage. Aberrant signaling, cytokine secretion, and tissue homing displayed by SLE T cells have been extensively studied and the underlying pathogenic molecular mechanisms are starting to be elucidated. T-cell-targeted treatments are being explored in SLE patients. This review is an update on the T-cell abnormalities and related therapeutic options in SLE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

with specific ANA, in particular of the IgG3 isotype, had significantly more severe biochemical and histological disease compared with those who were seronegative. None of the controls was positive.Conclusions: Disease specific ANA are present in the majority of patients with PBC when investigated at the level of immunoglobulin isotype. PBC specific ANA, in particular of the IgG3 isotype, are associated with a more severe disease course, possibly reflecting the peculiar ability of this isotype to engage mediators of damage.