918 resultados para Greenhouse gas fluxes
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
Ad oggi le città europee si configurano come i principali centri di cultura, innovazione e sviluppo economico. Tuttavia, ospitando circa il 75% della popolazione e consumando quasi l’80% dell’energia prodotta, a causa delle significative emissioni di gas serra esse contribuiscono in modo rilevante ai cambiamenti climatici e, allo stesso tempo, ne subiscono gli effetti più intensi. La Comunità Europea ha preso atto della necessità di intraprendere un’azione sinergica che adotti strategie di mitigazione climatica e preveda misure di adattamento per far fronte agli impatti climatici ormai inevitabili. L'orientamento dei Programmi europei di Ricerca e Innovazione sul tema delle città smart e clima-neutrali sposta l'attenzione dalla dimensione urbana verso la scala di distretto. In questa prospettiva, i Positive Energy Districts (PEDs) si configurano come distretti di nuova edificazione, ma anche come soluzioni ambiziose per la riqualificazione di quartieri esistenti che gestiscono in modo attivo il fabbisogno energetico con un bilancio nullo di emissioni e un surplus di energia prodotta da rinnovabili. La ricerca di dottorato focalizza l’indagine sul modello PEDs esplorandone il potenziale di applicabilità nel contesto urbano consolidato. Nello specifico, la tesi lavora allo sviluppo di due contributi di ricerca originali: il PED-Portfolio e il PED-Toolkit. Tali contributi propongono un approccio sistemico, attraverso il quale intraprendere un percorso di conoscenza e sperimentazione del modello PEDs in una prospettiva di riduzione del fabbisogno energetico, ma anche in un’ottica di migliore accessibilità, vivibilità e resilienza di questi distretti. Al fine di verificare l’applicabilità dei risultati della ricerca, gli strumenti sviluppati vengono testati su un’area pilota e gli esiti di tale sperimentazione sono poi messi a confronto con il quadro dello stato dell’arte e con le principali linee di ricerca internazionali sul tema PEDs, affinando gli esiti del progetto di dottorato in un processo di ricerca-sperimentazione-ricerca.
Resumo:
In this study, a novel hybrid thermochemical-biological refinery integrated with power-to-x approach was developed for obtaining biopolymers (namely polyhydroxyalkanoates, PHA). Within this concept, a trilogy process schema comprising of, (i) thermochemical conversion via integrated pyrolysis-gasification technologies, (ii) anaerobic fermentation of the bioavailable products obtained through either thermochemistry or water-electrolysis for volatile fatty acids (VFA) production, (iii) and VFA-to-PHA bioconversion via an original microaerophilic-aerobic process was developed. During the first stage of proposed biorefinery where lignocellulosic (wooden) biomass was converted into, theoretically fermentable products (i.e. bioavailables) which were defined as syngas and water-soluble fraction of pyrolytic liquid (WS); biochar as a biocatalyst material; and a dense-oil as a liquid fuel. Within integrated pyrolysis - gasification process, biomass was efficiently converted into fermentable intermediates representing up to 66% of biomass chemical energy content in chemical oxygen demand (COD) basis. In the secondary stage, namely anaerobic fermentation for obtaining VFA rich streams, three different downstream process were investigated. First fermentation test was acidogenic bioconversion of WS materials obtained through pyrolysis of biomass within an original biochar-packed bioreactor, it was sustained up to 0.6 gCOD/L-day volumetric productivity (VP). Second, C1 rich syngas materials as the gaseous fraction of pyrolysis-gasification stage, was fermented within a novel char-based biofilm sparger reactor (CBSR), where up to 9.8 gCOD/L-day VP was detected. Third was homoacetogenic bioconversion within the innovative power-to-x pathway for obtaining commodities via renewable energy sources. More specifically, water-electrolysis derived H2 and CO2 as a primary greenhouse gas was successfully bio-utilized by anaerobic mixed cultures into VFA within CBSR system (VP: 18.2 gCOD/L-day). In the last stage of the developed biorefinery schema, VFA is converted into biopolymers within a new continuous microaerophilic-aerobic microplant, where up to 60% of PHA containing sludges was obtained.
Resumo:
The continuous growth of global population brings an exponential increase on energy consumption and greenhouse gas emission in the atmosphere contributing to the increase of the planet temperature. Therefore, it is mandatory to adopt renewable energy production systems like photovoltaic or wind power: unfortunately, the main limit of these technologies is the natural intermittence of the energy sources that limits their applicability. The key enabling technology for a widespread usage of clean power sources are electrochemical energy storage systems, most commonly known as batteries. Batteries will enable the storage of energy during overproduction period and the release during low production period stabilizing the power outcome, allowing the connection to the main grid and increasing the applicability of renewable energy sources. Despite the high number of benefits that the widespread use of batteries will bring, starting from the reduction of CO2 emitted in the atmosphere, it is necessary also to take care of the environmental impact of processes and materials used for the production of electrochemical storage systems. In addition, there are many different battery systems, with different chemistries and designs that require specific strategies. Nowadays, the most part of the materials and chemicals used for battery production are toxic for humans and the environment. For this reason, this Ph.D. thesis addresses the challenging scope of lowering the environmental impact of manufacturing processes of different electrochemical energy storage systems using natural derived or low carbon footprint materials while increasing the performances with respect to commercial devices. The activities carried out during my Ph.D. cover a high number of different electrochemical storage systems involving a wide range of electrochemical processes from capacitive to faradic. New materials, different production processes and new battery design, all in view of sustainability and low environmental impact, increased the innovative and challenging aspects of this work.
Resumo:
Decarbonization of maritime transport requires immediate action. In the short term, ship weather routing can provide greenhouse gas emission reductions, even for existing ships and without retrofitting them. Weather routing is based on making optimal use of both envi- ronmental information and knowledge about vessel seakeeping and performance. Combining them at a state-of-the-art level and making use of path planning in realistic conditions can be challenging. To address these topics in an open-source framework, this thesis led to the development of a new module called bateau , and to its combination with the ship routing model VISIR. bateau includes both hull geometry and propulsion modelling for various vessel types. It has two objectives: to predict the sustained speed in a seaway and to estimate the CO2 emission rate during the voyage. Various semi-empirical approaches were used in bateau to predict the ship hydro- and aerodynamical resistance in both head and oblique seas. Assuming that the ship sails at a constant engine load, the involuntary speed loss due to waves was estimated. This thesis also attempted to clarify the role played by the actual representation of the sea state. In particular, the influence of the wave steepness parameter was assessed. For dealing with ships with a greater superstructure, the wind added resistance was also estimated. Numerical experiments via bateau were conducted for both a medium and a large-size container ships, a bulk-carrier, and a tanker. The simulations of optimal routes were carried out for a feeder containership during voyages in the North Indian Ocean and in the South China Sea. Least-CO2 routes were compared to the least-distance ones, assessing the relative CO2 savings. Analysis fields from the Copernicus Marine Service were used in the numerical experiments.
Resumo:
Within this master thesis, various aspects related to the issue of sustainability in the food sector were addressed, focusing on the greenhouse gas emissions derived from livestock production. The increment in population number and wealth is directly related to the growing demand for meat products, which is, in turn, related to an increase in greenhouse gas emissions. Consumers are becoming more and more aware of these environmental issues and, therefore, sustainability factors are becoming even more relevant also from the environmental point of view. A very useful tool in this field is Response-Inducing Sustainability Evaluation (RISE), a software that allows you to determine the sustainability of a farm under many aspects, like energy consumption, livestock management and soil use. The RISE software processes the information obtained through a questionnaire submitted by the farmer, in which 10 different areas of sustainability in the farm are covered. For each theme, the results are expressed clearly with a score that goes from 0 to 100. The experimentation discussed in this work included two different projects, one regarding a dairy farm and the other regarding a poultry farm. The first one was conducted on a dairy farm in Germany and the results allowed to highlight the weakest areas of the farm on which recommendations were given for ecological improvement. The second project was conducted on a chicken broiler farm in Italy, on an experimental basis since it was the first time that the software was applied to poultry. The results pointed out the aspects that can be improved in the RISE software in order to make it more suitable for future poultry studies.
Resumo:
A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.
Resumo:
We evaluated above- and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid-July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.
Resumo:
The data files give the basic field and laboratory data on five ponds in the northeast Siberian Arctic tundra on Samoylov. The files contain water and soil temperature data of the ponds, methane fluxes, measured with closed chambers in the centres without vascular plants and the margins with vascular plants, the contribution of plant mediated fluxes on total methane fluxes, the gas concentrations (methane and dissolved inorganic carbon, oxygen) in the soil and the water column of the ponds, microbial activities (methane production, methane oxidation, aerobic and anaerobic carbon dioxide production), total carbon pools in the different horizons of the bottom soils, soil bulk density, soil substance density, and soil porosity.
Resumo:
The introduction of crop management practices after conversion of Amazon Cerrado into cropland influences soil C stocks and has direct and indirect consequences on greenhouse gases (GHG) emissions. The aim of this study was to quantify soil C sequestration, through the evaluation of the changes in C stocks, as well as the GHG fluxes (N(2)O and CH(4)) during the process of conversion of Cerrado into agricultural land in the southwestern Amazon region, comparing no-tillage (NT) and conventional tillage (CT) systems. We collected samples from soils and made gas flux measurements in July 2004 (the dry season) and in January 2005 (the wet season) at six areas: Cerrado, CT cultivated with rice for 1 year (1CT) and 2 years (2CT), and NT cultivated with soybean for 1 year (1NT), 2 years (2NT) and 3 years (3NT), in each case after a 2-year period of rice under CT. Soil samples were analyzed in both seasons for total organic C and bulk density. The soil C stocks, corrected for a mass of soil equivalent to the 0-30-cm layer under Cerrado, indicated that soils under NT had generally higher C storage compared to native Cerrado and CT soils. The annual C accumulation rate in the conversion of rice under CT into soybean under NT was 0.38 Mg ha(-1) year(-1). Although CO(2) emissions were not used in the C sequestration estimates to avoid double counting, we did include the fluxes of this gas in our discussion. In the wet season, CO(2) emissions were twice as high as in the dry season and the highest N(2)O emissions occurred under the NT system. There were no CH(4) emissions to the atmosphere (negative fluxes) and there were no significant seasonal variations. When N(2)O and CH(4) emissions in C-equivalent were subtracted (assuming that the measurements made on 4 days were representative of the whole year), the soil C sequestration rate of the conversion of rice under CT into soybean under NT was 0.23 Mg ha(-1) year(-1). Although there were positive soil C sequestration rates, our results do not present data regarding the full C balance in soil management changes in the Amazon Cerrado. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Blanks (flasks without substrate containing only inoculum and medium) are used in vitro to correct for gas. CH(4) and residual organic matter (OM) fermented in inoculum. However inclusion of rumen fermentation modifiers may affect fermentation of OM in the substrate and inoculum. Thus, data correction using blanks that lack additives may result in inaccurate adjustment for background fermentation. Our objective was to evaluate impacts of using blanks containing additive (i.e., specific blanks) or blanks without additive on estimation of in vitro net gas and CH(4) production. We used the semi-automatic in vitro gas production technique including monensin sodium at 2.08 mg/l of buffered rumen fluid (Experiment 1) or carvacrol, eugenol and 1,8-cineol at 667 mg/l (Experiment 2) in flasks with substrate and in blank flasks. At 16h of incubation, monensin reduced (P <= 0.02) total gas production in flasks containing substrate (162.0 ml versus 146.3 ml) and in blanks (84.4 ml versus 79.2 ml). Total methane production was also decreased (P <= 0.05) by adding monensin to flasks containing substrate (15.7 ml versus 11.9 ml) as well as in blanks (6.4 ml versus 5.0 ml). Inclusion of carvacrol or eugenol reduced (P <= 0.05) total gas and CH(4) production in flasks with substrate and in blanks, but in a more pronounced manner than monensin. For these three additives, correction for blank without additive resulted in lower net gas and CH(4) production than correction for a treatment specific blank. For instance, correcting carvacrol data using a blank without the additive resulted in negative net gas and CH(4) production (-6.5 and -1.5 ml. respectively). These biologically impossible results occurred because total gas and CH(4) production in blanks without carvacrol (46.1 and 2.1 ml, respectively) were higher than in flasks containing substrate plus carvacrol (39.7 and 0.6 ml, respectively). Results demonstrated that inclusion of rumen additives affected fermentation of OM in the substrate and the inoculum. Thus, correction of gas and CH(4) production using blanks without additives resulted in overestimation of these variables. Blanks containing the additive of interest should be included when rumen fermentation modifiers are evaluated in vitro. This paper is part of the special issue entitled: Greenhouse Gases in Animal Agriculture Finding a Balance between Food and Emissions, Guest Edited by T.A. McAllister, Section Guest Editors: K.A. Beauchemin, X. Hao, S. McGinn and Editor for Animal Feed Science and Technology, P.H. Robinson. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the field of energy, natural gas is an essential bridge to a clean, low carbon, renewable energy era. However, natural gas processing and transportation regulation require the removal of contaminant compounds such as carbon dioxide (CO2). Regarding clean air, the increasing atmospheric concentrations of greenhouse gases, specifically CO2, is of particular concern. Therefore, new costeffective, high performance technologies for carbon capture have been researched and the design of materials with the ability to efficiently separate CO2 from other gases is of vital importance.(...)
Resumo:
The effects of the nongray absorption (i.e., atmospheric opacity varying with wavelength) on the possible upper bound of the outgoing longwave radiation (OLR) emitted by a planetary atmosphere have been examined. This analysis is based on the semigray approach, which appears to be a reasonable compromise between the complexity of nongray models and the simplicity of the gray assumption (i.e., atmospheric absorption independent of wavelength). Atmospheric gases in semigray atmospheres make use of constant absorption coefficients in finite-width spectral bands. Here, such a semigray absorption is introduced in a one-dimensional (1D) radiative– convective model with a stratosphere in radiative equilibrium and a troposphere fully saturated with water vapor, which is the semigray gas. A single atmospheric window in the infrared spectrum has been assumed. In contrast to the single absolute limit of OLR found in gray atmospheres, semigray ones may also show a relative limit. This means that both finite and infinite runaway effects may arise in some semigray cases. Of particular importance is the finding of an entirely new branch of stable steady states that does not appear in gray atmospheres. This new multiple equilibrium is a consequence of the nongray absorption only. It is suspected that this new set of stable solutions has not been previously revealed in analyses of radiative–convective models since it does not appear for an atmosphere with nongray parameters similar to those for the earth’s current state
Resumo:
The longwave emission of planetary atmospheres that contain a condensable absorbing gas in the infrared (i.e., longwave), which is in equilibrium with its liquid phase at the surface, may exhibit an upper bound. Here we analyze the effect of the atmospheric absorption of sunlight on this radiation limit. We assume that the atmospheric absorption of infrared radiation is independent of wavelength except within the spectral width of the atmospheric window, where it is zero. The temperature profile in radiative equilibrium is obtained analytically as a function of the longwave optical thickness. For illustrative purposes, numerical values for the infrared atmospheric absorption (i.e., greenhouse effect) and the liquid vapor equilibrium curve of the condensable absorbing gas refer to water. Values for the atmospheric absorption of sunlight (i.e., antigreenhouse effect) take a wide range since our aim is to provide a qualitative view of their effects. We find that atmospheres with a transparent region in the infrared spectrum do not present an absolute upper bound on the infrared emission. This result may be also found in atmospheres opaque at all infrared wavelengths if the fraction of absorbed sunlight in the atmosphere increases with the longwave opacity
Resumo:
Cannabis cultivation in order to produce drugs is forbidden in Switzerland. Thus, law enforcement authorities regularly ask forensic laboratories to determinate cannabis plant's chemotype from seized material in order to ascertain that the plantation is legal or not. As required by the EU official analysis protocol the THC rate of cannabis is measured from the flowers at maturity. When laboratories are confronted to seedlings, they have to lead the plant to maturity, meaning a time consuming and costly procedure. This study investigated the discrimination of fibre type from drug type Cannabis seedlings by analysing the compounds found in their leaves and using chemometrics tools. 11 legal varieties allowed by the Swiss Federal Office for Agriculture and 13 illegal ones were greenhouse grown and analysed using a gas chromatograph interfaced with a mass spectrometer. Compounds that show high discrimination capabilities in the seedlings have been identified and a support vector machines (SVMs) analysis was used to classify the cannabis samples. The overall set of samples shows a classification rate above 99% with false positive rates less than 2%. This model allows then discrimination between fibre and drug type Cannabis at an early stage of growth. Therefore it is not necessary to wait plants' maturity to quantify their amount of THC in order to determine their chemotype. This procedure could be used for the control of legal (fibre type) and illegal (drug type) Cannabis production.