979 resultados para Gravity segregation
Resumo:
Inheritance of resistance to Puccinia psidii G. Winter in a eucalyptus interspecific hybrid progeny evaluated under conditions of natural infection Rust caused by the fungus Puccinia psidii is currently the most important disease of eucalyptus. It is widely disseminated in Brazil, and causes serious damage in nurseries and plantation areas. The identification of resistant germplasm along with knowledge of the genetic basis of resistance heredity are the first requirements for the success of breeding programs aiming to develop resistant varieties. Earlier studies carried out under controlled conditions suggested a monogenic control as well as the participation of at least two genes promoting resistance to rust. The goal of this study was to evaluate the resistance to P. psidii under field conditions in fourteen progenies from controlled crosses and self-crosses among four hybrid clones of Eucalyptus grandis Hill ex Maiden x Eucalyptus urophylla ST Blake that contrast for resistance to the fungus. Results indicated that resistance could be explained by one locus with main effects and at least three different alleles. However, loci with minor effects may influence the resistance, since variation on severity classes was observed. Differences in segregation of resistance between reciprocal crosses were not observed, indicating absence of cytoplasmic effects.
Resumo:
The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA x CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait.
Resumo:
Desserts made with soy cream, which are oil-in-water emulsions, are widely consumed by lactose-intolerant individuals in Brazil. In this regard, this study aimed at using response surface methodology (RSM) to optimize the sensory attributes of a soy-based emulsion over a range of pink guava juice (GJ: 22% to 32%) and soy protein (SP: 1% to 3%). WHC and backscattering were analyzed after 72 h of storage at 7 degrees C. Furthermore, a rating test was performed to determine the degree of liking of color, taste, creaminess, appearance, and overall acceptability. The data showed that the samples were stable against gravity and storage. The models developed by RSM adequately described the creaminess, taste, and appearance of the emulsions. The response surface of the desirability function was used successfully in the optimization of the sensory properties of dairy-free emulsions, suggesting that a product with 30.35% GJ and 3% SP was the best combination of these components. The optimized sample presented suitable sensory properties, in addition to being a source of dietary fiber, iron, copper, and ascorbic acid.
Resumo:
Student attitudes towards a subject affect their learning. For students in physics service courses, relevance is emphasised by vocational applications. A similar strategy is being used for students who aspire to continued study of physics, in an introduction to fundamental skills in experimental physics – the concepts, computational tools and practical skills involved in appropriately obtaining and interpreting measurement data. An educational module is being developed that aims to enhance the student experience by embedding learning of these skills in the practicing physicist’s activity of doing an experiment (gravity estimation using a rolling pendulum). The group concentrates on particular skills prompted by challenges such as: • How can we get an answer to our question? • How good is our answer? • How can it be improved? This explicitly provides students the opportunity to consider and construct their own ideas. It gives them time to discuss, digest and practise without undue stress, thereby assisting them to internalise core skills. Design of the learning activity is approached in an iterative manner, via theoretical and practical considerations, with input from a range of teaching staff, and subject to trials of prototypes.
Resumo:
In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
Segregation of mRNAs in the cytoplasm of polar cells has been demonstrated for proteins involved in Xenopus and Drosophila oogenesis, and for some proteins in somatic cells. It is assumed that vectorial transport of the messages is generally responsible for this localization. The mRNA encoding the basic protein of central nervous system myelin is selectively transported to the distal ends of the processes of oligodendrocytes, where it is anchored to the myelin membrane and translated. This transport is dependent on a 21-nucleotide cis-acting segment of the 3'-untranslated region (RTS). Proteins that bind to this cis-acting segment have now been isolated from extracts of rat brain. A group of six 35-42-kDa proteins bind to a 35-base oligoribonucleotide incorporating the RTS, but not to several oligoribonucleotides with the same composition but randomized sequences, thus establishing specificity for the base sequence in the RTS. The most abundant of these proteins has been identified, by Edman sequencing of tryptic peptides and mass spectroscopy, as heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a 36-kDa member of a family of proteins that are primarily, but not solely, intranuclear. This protein was most abundant in samples from rat brain and testis, with lower amounts in other tissues. It was separated from the other polypeptides by using reverse-phase HPLC and shown to retain preferential association with the RTS. In cultured oligodendrocytes, hnRNP A2 was demonstrated by confocal microscopy to be distributed throughout the nucleus, cell soma, and processes.
Resumo:
Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases, Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus, Large errors in the simulated results were observed if the phase-segregation was not considered.
Resumo:
Febrile seizures affect approximately 3% of all children under six years of age and are by far the most common seizure disorder(1). A small proportion of children with febrile seizures later develop ongoing epilepsy with afebrile seizures(2). Segregation analysis suggests the majority of cases have complex inheritance(3) but rare families show apparent autosomal dominant: inheritance. Two putative loci have been mapped (FEB1 and FEB2), but specific genes have not yet been identified(4,5). We recently described a clinical subset, termed generalized epilepsy with febrile seizures plus (GEFS(+)), in which many family members have seizures with fever that may persist beyond six years of age or be associated with afebrile generalized seizures(6). We now report linkage, in another large GEFS(+) family, to chromosome region 19q13.1 and identification of a mutation in the voltage-gated sodium (Na+)-channel beta 1 subunit gene (SCN1B). The mutation changes a conserved cysteine residue disrupting a putative disulfide bridge which normally maintains an extracellular immunoglobulin-like fold. Go-expression of the mutant pr subunit with a brain Na+-channel alpha subunit in Xenopus laevis oocytes demonstrates that the mutation interferes with the ability of the subunit to modulate channel-gating kinetics consistent with a loss-of-function allele. This observation develops the theme that idiopathic epilepsies are a family of channelopathies and raises the possibility of involvement of other Na+-channel subunit genes in febrile seizures and generalized epilepsies with complex inheritance patterns.
Resumo:
Analytical electron microscopy was used to measure the composition of grain boundaries (GBs) and interconstituent boundaries (IBs) of X52 pipeline steel using specimens about 40-60 nm in thickness. All elements of interest were examined with the exception of carbon. With this caveat; there was no segregation at proeutectoid ferrite GBs. This indicated that the commonly expected species S and P are not responsible for preferential corrosion of GBs during intergranular stress corrosion cracking of pipeline steels. Manganese was the only species measured to segregate at the IBs. Manganese segregated to the IBs between proeutectoid ferrite and pearlitic cementite, and desegregated from IBs between proeutectoid ferrite and pearlitic ferrite. The pearlitic cementite was Mn rich. There was no Mn segregation at the IBs between pearlitic ferrite and pearlitic cementite. The pattern of Mn segregation could be explained in terms of diffusion in the process zone ahead of the pearlite during the austenite to pearlite transformation and diffusion in the IBs between the proeutectoid ferrite and pearlite. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A new conceptual framework has been developed which explains the formation of shear-related casting defects such as porosity, segregation and tears. The theory relates defect formation to the mechanical behaviour of the partially solidified microstructure when shear stresses are developed during the filling of a casting and by the subsequent feeding processes during solidification. Two transition points, the dendrite coherency point and the maximum packing solid fraction, divide the mushy zone into three regions of different mechanical and feeding behaviours. The response of the mush to shear is related to the presence of these zones during solidification of a casting. The resulting defects are rationalized by considering the governing local shear stress and shear rate, local strength and time available for fluid flow. The design of the casting, the casting process used and the alloy composition all influence the relative importance of shearing on defect formation. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
The equal sex ratios found in many species with heterogametic sex determination may be a consequence of selection for equality or the result of the Mendelian segregation of the two sex chromosomes. A lack of genetic variation in sex ratio in species with heterogamety has been the major obstacle in distinguishing between these two hypotheses. We overcome this obstacle by generating hybrids between two species of Drosophila. The resulting hybrid lines had biased sex ratios, allowing us to observe the evolution of sex ratio in replicate populations. Sex ratio converged towards 1:1 after 16 generations of natural selection. These changes in sex ratio were not due to differences in viability between the sexes and the loci underlying the variation in sex ratio were not sex-linked. Equal sex ratios may therefore be the result of natural selection as Fisher predicted.
Resumo:
Objective The syndrome of inappropriate secretion of antidiuretic hormone is a rare disorder in dogs characterised by hypo-osmolality and persistent arginine vasopressin production in the absence of hypovolaemia and/or hypotension. The study describes the efficacy and safety of the nonpeptide selective arginine vasopressin V-2 receptor antagonist OPC-31260 in a dog with the naturally occurring syndrome. Design The detailed case history of a dog with spontaneous syndrome of inappropriate secretion of antidiuretic hormone that received long-term therapy with oral OPC-31260 is presented. Effects of the first dose of OPC-31260 and of a dose administered after a continuous dosing period of 12 days are reported. Procedure Packed cell volume, plasma sodium, total protein, arginine vasopressin, renin activity, atrial natriuretic peptide, urine specific gravity, urine output, heart rate and body weight were monitored for 2 h before, and for 4 h after, the first dose of OPC-31260. The same parameters plus plasma osmolality and urine osmolality were monitored when an identical dose was administered after 12 days of therapy. Results Oral administration of OPC-31260 at 3 mg/kg body weight resulted in marked aquaresis with increased urine output and decline in urine specific gravity within 1 h. Corresponding increases in concentrations of plasma sodium, plasma osmolality and plasma renin activity were recorded over a 4 h period. Arginine vasopressin concentration remained inappropriately elevated throughout the study. Results were similar when the trial procedure was repeated after a stabilisation period of 12 days. Long-term therapy with OPC-31260 at a dose of 3 mg/kg body weight orally every 12 h resulted in good control of clinical signs with no deleterious effects detected during a 3-year follow-up period. Despite sustained clinical benefits observed in this case, plasma sodium did not normalise with continued administration of the drug. Conclusions Treatment of a dog with naturally occurring syndrome of inappropriate secretion of antidiuretic hormone with OPC-31260 at 3 mg/kg body weight orally every 12 h resulted in marked aquaresis and significant palliation of clinical signs with no discernible side-effects detected over a 3-year period. Thus, OPC-31260 appears to offer a feasible medical alternative to water restriction for treatment of dogs with syndrome of inappropriate secretion of antidiuretic hormone. Higher doses of OPC-31260 may be required to achieve and maintain normal plasma sodium in dogs with this syndrome.
Resumo:
We use the finite element method to model three-dimensional convective pore-fluid flow in fluid-saturated porous media when they are heated from below. In particular, we employ the particle-tracking technique to mimic the trajectories of particles in three-dimensional fluid flow problems. The related numerical results demonstrated that: (1) The progressive asymptotic approach procedure, which was previously developed for the finite element modelling of two-dimensional convective pore-fluid flow problems, is equally applicable to the finite element modelling of three-dimensional convective pore-fluid flow in fluid-saturated porous media heated from below. (2) The perturbation of gravity at different planes has a significant effect on the pattern of three-dimensional convective pore-fluid flow and therefore, may influence the pattern of orebody formation and mineralization in three-dimensional hydrothermal systems. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.