877 resultados para Graph Algorithms
Resumo:
Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.
Resumo:
Das intelligente Tutorensystem LARGO für die Rechtswissenschaften soll Jurastudenten helfen, Argumentationsstrategien zu lernen. Im verwendeten Ansatz werden Gerichtsprotokolle als Lernmaterialien verwendet: Studenten annotieren diese und erstellen graphische Repräsentationen des Argumentationsverlaufs. Das System kann dabei zur Reflexion über die von Anwälten vorgebrachten Argumente anregen und Lernende auf mögliche Schwächen in ihrer Analyse des Disputs hinweisen. Zur Erkennung von Schwächen verwendet das System Graphgrammatiken und kollaborative Filtermechanismen. Dieser Artikel stellt dar, wie in LARGO auf Basis der Bestimmung eines „Benutzungskontextes“ die Rückmeldungen im System benutzungsadaptiv gestaltet werden. Weiterhin diskutieren wir auf Basis der Ergebnisse einer kontrollierten Studie mit dem System, welche mit Jurastudierenden an der University of Pittsburgh stattfand, in wie weit der automatisch bestimmte Benutzungskontext zur Vorhersage von Lernerfolgen bei Studenten verwendbar ist.
Resumo:
wo methods for registering laser-scans of human heads and transforming them to a new semantically consistent topology defined by a user-provided template mesh are described. Both algorithms are stated within the Iterative Closest Point framework. The first method is based on finding landmark correspondences by iteratively registering the vicinity of a landmark with a re-weighted error function. Thin-plate spline interpolation is then used to deform the template mesh and finally the scan is resampled in the topology of the deformed template. The second algorithm employs a morphable shape model, which can be computed from a database of laser-scans using the first algorithm. It directly optimizes pose and shape of the morphable model. The use of the algorithm with PCA mixture models, where the shape is split up into regions each described by an individual subspace, is addressed. Mixture models require either blending or regularization strategies, both of which are described in detail. For both algorithms, strategies for filling in missing geometry for incomplete laser-scans are described. While an interpolation-based approach can be used to fill in small or smooth regions, the model-driven algorithm is capable of fitting a plausible complete head mesh to arbitrarily small geometry, which is known as "shape completion". The importance of regularization in the case of extreme shape completion is shown.
Resumo:
Obwohl Distributionszentren (DZ) zentrale Kernelemente von Lieferketten darstellen, lässt sich gegenwärtig keine strukturierte Methodik finden, um diese objektiv, systematisch und insbesondere ganzheitlich über alle Funktionsbereiche hinweg – vom Wareneingang über die Kommissionierung bis zum Warenausgang – zu planen. Der vorliegende Artikel befasst sich mit dieser wissenschaftlichen Lücke und beschreibt wie mit Hilfe von analytisch modellierten Standardmodulen innerhalb der verschiedenen Funktionsbereiche eines DZ durch Anwendung eines graphentheoretischen Ansatzes funktionsbereichsübergreifende Varianten von DZ generiert werden können. Zur automatisierten Ermittlung der optimalen Standardmodulkombination bzw. der optimalen DZ-Variante werden modifizierte Algorithmen zur Findung der kürzesten Wege innerhalb eines Graphen angewendet.
Resumo:
This paper introduces a database of freely available stereo-3D content designed to facilitate research in stereo post-production. It describes the structure and content of the database and provides some details about how the material was gathered. The database includes examples of many of the scenarios characteristic to broadcast footage. Material was gathered at different locations including a studio with controlled lighting and both indoor and outdoor on-location sites with more restricted lighting control. The database also includes video sequences with accompanying 3D audio data recorded in an Ambisonics format. An intended consequence of gathering the material is that the database contains examples of degradations that would be commonly present in real-world scenarios. This paper describes one such artefact caused by uneven exposure in the stereo views, causing saturation in the over-exposed view. An algorithm for the restoration of this artefact is proposed in order to highlight the usefuiness of the database.
Resumo:
Stemmatology, or the reconstruction of the transmission history of texts, is a field that stands particularly to gain from digital methods. Many scholars already take stemmatic approaches that rely heavily on computational analysis of the collated text (e.g. Robinson and O’Hara 1996; Salemans 2000; Heikkilä 2005; Windram et al. 2008 among many others). Although there is great value in computationally assisted stemmatology, providing as it does a reproducible result and allowing access to the relevant methodological process in related fields such as evolutionary biology, computational stemmatics is not without its critics. The current state-of-the-art effectively forces scholars to choose between a preconceived judgment of the significance of textual differences (the Lachmannian or neo-Lachmannian approach, and the weighted phylogenetic approach) or to make no judgment at all (the unweighted phylogenetic approach). Some basis for judgment of the significance of variation is sorely needed for medieval text criticism in particular. By this, we mean that there is a need for a statistical empirical profile of the text-genealogical significance of the different sorts of variation in different sorts of medieval texts. The rules that apply to copies of Greek and Latin classics may not apply to copies of medieval Dutch story collections; the practices of copying authoritative texts such as the Bible will most likely have been different from the practices of copying the Lives of local saints and other commonly adapted texts. It is nevertheless imperative that we have a consistent, flexible, and analytically tractable model for capturing these phenomena of transmission. In this article, we present a computational model that captures most of the phenomena of text variation, and a method for analysis of one or more stemma hypotheses against the variation model. We apply this method to three ‘artificial traditions’ (i.e. texts copied under laboratory conditions by scholars to study the properties of text variation) and four genuine medieval traditions whose transmission history is known or deduced in varying degrees. Although our findings are necessarily limited by the small number of texts at our disposal, we demonstrate here some of the wide variety of calculations that can be made using our model. Certain of our results call sharply into question the utility of excluding ‘trivial’ variation such as orthographic and spelling changes from stemmatic analysis.
Resumo:
Voluntary control of information processing is crucial to allocate resources and prioritize the processes that are most important under a given situation; the algorithms underlying such control, however, are often not clear. We investigated possible algorithms of control for the performance of the majority function, in which participants searched for and identified one of two alternative categories (left or right pointing arrows) as composing the majority in each stimulus set. We manipulated the amount (set size of 1, 3, and 5) and content (ratio of left and right pointing arrows within a set) of the inputs to test competing hypotheses regarding mental operations for information processing. Using a novel measure based on computational load, we found that reaction time was best predicted by a grouping search algorithm as compared to alternative algorithms (i.e., exhaustive or self-terminating search). The grouping search algorithm involves sampling and resampling of the inputs before a decision is reached. These findings highlight the importance of investigating the implications of voluntary control via algorithms of mental operations.