996 resultados para Gold Catalysis
Resumo:
LL catalytic RNAs (ribozymes) require or are stimulated by divalent metal ions, but it has been difficult to separate the contribution of these metal ions to formation of the RNA tertiary structure1 from a more direct role in catalysis. The Tetrahymena ribozyme catalyses cleavage of exogenous RNA2,3 or DNA4,5 substrates with an absolute requirement for Mg2+ or Mn2+ (ref. 6). A DNA substrate, in which the bridging 3' oxygen atom at the cleavage site is replaced by sulphur, is cleaved by the ribozyme about 1,000 times more slowly than the corresponding unmodified DNA substrate when Mg2+ is present as the only divalent metal ion. But addition of Mn2+ or Zn2+ to the reaction relieves this negative effect, with the 3' S–P bond being cleaved nearly as fast as the 3' O–P bond. Considering that Mn2+ and Zn2+ coordinate sulphur more strongly than Mg2+ does7,8, these results indicate that the metal ion contributes directly to catalysis by coordination to the 3' oxygen atom in the transition state, presumably stabilizing the developing negative charge on the leaving group. We conclude that the Tetrahymena ribozyme is a metalloenzyme, with mechanistic similarities to several protein enzymes9–12.
Resumo:
Surface-enhanced Raman scattering (SERS) excited at several visible wavelengths and recorded using a cooled charged-coupled device detector is reported from the mobile, interfacial, liquid-like metal films (MELLFs) formed when solutions of metal complexes or pyridine in chlorocarbon solvents are mixed with aqueous sols of silver or gold. MELLF formation has not previously been reported for gold sols or for pyridine as stabilizer. Comparison of the spectra for the MELLFs formed from individual metal complexes and from 50:50 mixtures show that the spectral patterns observed for the latter are distinctive and are not generally equivalent to the sum of the spectra associated with the individual complexes, in contrast to the situation observed for sols where the individual spectra do appear to be additive. Raman scattering from both gold and silver MELLFs is readily observed at excitation wavelengths in the red, around 750 nm, but at 514 nm only that from silver films is detectable. These findings are considered in terms of particle size and absorption band intensities. A preliminary study of the film surface topography and particle size was carried out by scanning tunnelling electron microscopy (STM) of Ag MELLFs deposited on gold-coated mica substrates. Computer-processed images of the STM data show the presence on the film surface of finger-like bars, 200-400 nm long with approximately square cross-section, 40-60 nm side, together with other smaller cuboid features. The implications of these findings in relation to SERS are briefly considered.
Resumo:
Simple and powerful: The reaction kinetics at surfaces of heterogeneous catalysts is reformulated in terms of the involved chemical potentials. Based on this formulism, an approach of searching for good catalysts is proposed without recourse to extensive calculations of reaction barriers and detailed kinetic analyses. (see picture; R=reactant, I=surface intermediate, P=product, and =standard chemical potential).
Resumo:
Gold nanoparticles (GNPs) are of considerable interest for use as a radiosensitizer, because of their biocompatibility and their ability to increase dose deposited because of their high mass energy absorption coefficient. Their sensitizing properties have been verified experimentally, but a discrepancy between the experimental results and theoretical predictions suggests that the sensitizing effect does not depend solely on gold's superior absorption of energetic photons. This work presents the results of three sets of experiments that independently mapped out the energy dependence of the radiosensitizing effects of GNPs on plasmid DNA suspended in water. Incident photon energy was varied from 11.8 to 80 keV through the use of monochromatic synchrotron and broadband X-rays. These results depart significantly from the theoretical predictions in two ways: First, the sensitization is significantly larger than would be predicted; second, it does not vary with energy as would be predicted from energy absorption coefficients. These results clearly demonstrate that the effects of GNP-enhanced therapies cannot be predicted by considering additional dose alone and that a greater understanding of the processes involved is necessary for the development of future therapeutics.
Resumo:
Background and purpose: The addition of gold nanoparticles (GNPs) to tumours leads to an increase in dose due to their high density and energy absorption coefficient, making it a potential radiosensitiser. However, experiments have observed radiosensitisations significantly larger than the increase in dose alone, including at megavoltage energies where gold's relative energy absorption is lowest. This work investigates whether GNPs create dose inhomogeneities on a sub-cellular scale which combine with non-linear dose dependence of cell survival to be the source of radiosensitisation at megavoltage energies.
Resumo:
A recent paper by Lechtman et al (2011 Phys. Med. Biol. 56 4631-47) presented Monte Carlo modelling of gold nanoparticle dose modification. In it, they predict that the introduction of gold nanoparticles has the strongest effect with x-rays at kilovoltage energies, and that negligible increases in dose are expected at megavoltage energies. While these results are in agreement with others in the literature (including those produced by our group), the conclusion that '(goldnanoparticle) radiosensitization using a 6 MV photon source is not clinically feasible' appears to conflict with recently published experimental studies which have shown radiosensitization using 6 MV x-ray sources with relatively low gold concentrations. The increasing disparity between theoretical predictions of dose enhancement and experimental results in the field of gold nanoparticle radiosensitization suggests that, while the ability of gold nanoparticles to modify dose within a tumour volume is well understood, the resulting radiosensitization is not simply correlated with this measure. This highlights the need to validate theoretical predictions of this kind against experimental measurements, to ensure that the scenarios and values being modelled are meaningful within a therapeutic context.
Gender, achievement and the ‘Gold Standard’: differential performance in the GCE A level examination
Resumo:
This paper gives an overview of the research done since 1999 at Eindhoven University of Technology in the Netherlands in the field of miniaturization of heterogeneous catalytic reactors. It is described that different incentives exist for the development of these microstructured reaction systems. These include the need for efficient research instruments in catalyst development and screening, the need for small-scale reactor devices for hydrogen production for low-power electricity generation with fuel cells, and the recent quest for intensified processing equipment and novel process architectures (as in the fine chemicals sector). It is demonstrated that also in microreaction engineering, catalytic engineering and reactor design go hand-in-hand. This is illustrated by the design of an integrated microreactor and heat-exchanger for optimum performance of a highly exothermic catalytic reaction, viz. ammonia oxidation. It is argued that future developments in catalytic microreaction technology will depend on the availability of very active catalysts (and catalyst coating techniques) for which microreactors may become the natural housing.
Resumo:
Robust thin-film oxygen sensors were fabricated by encapsulating a lipophilic, polynuclear gold(I) complex, bis{m-(bis(diphenylphosphino)octadecylamine-P,P')}dichlorodigold(I), in oxygen permeable polystyrene and ormosil matrices. Strong phosphorescence, which was quenched by gaseous and dissolved oxygen, was observed from both matrices. The polystyrene encapsulated dye exhibited downward-turning Stern-Volmer plots which were well fitted by a two-site model. The ormosil trapped complex showed linear Stern-Volmer plots for dissolved oxygen quenching but was downward turning for gaseous oxygen. No leaching was observed when the ormosil based sensors were immersed in flowing water over an 8 h period. Both films exhibited fully reversible response and recovery to changing oxygen concentration with rapid response times. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.