964 resultados para Geology of Newfoundland.
Resumo:
We report U-Pb and 39Ar-40Ar measurements on plutonic rocks recovered from the Ocean Drilling Program (ODP) Legs 173 and 210. Drilling revealed continental crust (Sites 1067 and 1069) and exhumed mantle (Sites 1070 and 1068) along the Iberia margin and exhumed mantle (Site 1277) on the conjugate Newfoundland margin. Our data record a complex igneous and thermal history related to the transition from rifting to seafloor spreading. The results show that the rift-to-drift transition is marked by a stuttering start of MORB-type magmatic activity. Subsequent to initial alkaline magmatism, localized mid-oceanic ridge basalts (MORB) magmatism was again replaced by basin-wide alkaline events, caused by a low degree of decompression melting due to tectonic delocalization of deformation. Such "off-axis" magmatism might be a common process in (ultra-) slow oceanic spreading systems, where "magmatic" and "tectonic" spreading varies in both space and time.
Resumo:
The engineer must have sufficient theoretical knowledge to be applied to solve specific problems, with the necessary capacity to simplify these approaches, and taking into account factors such as speed, simplicity, quality and economy. In Geology, its ultimate goal is the exploration of the history of the geological events through observation, deduction, reasoning and, in exceptional cases by the direct underground exploration or experimentation. Experimentation is very limited in Geology. Reproduction laboratory of certain phenomena or geological processes is difficult because both time and space become a large scale. For this reason, some Earth Sciences are in a nearly descriptive stage whereas others closest to the experimental, Geophysics and Geochemistry, have assimilated progress experienced by the physics and chemistry. Thus, Anglo-Saxon countries clearly separate Engineering Geology from Geological Engineering, i.e. Applied Geology to the Geological Engineering concepts. Although there is a big professional overlap, the first one corresponds to scientific approach, while the last one corresponds to a technological one. Applied Geology to Engineering could be defined as the Science and Applied Geology to the design, construction and performance of engineering infrastructures in and field geology discipline. There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice, but you get good workers and routine and mediocre teachers. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career (tunnels, dams, groundwater, roads, etc). This work analyses in depth the justification of such practical trips. It shows the criteria and methods of planning and the result which manifests itself in pupils. Once practical trips experience developed, the objective work tries to know about results and changes on student’s motivation in learning perspective. This is done regardless of the outcome of their knowledge achievements assessed properly and they are not subject to such work. For this objective, it has been designed a survey about their motivation before and after trip. Survey was made by the Unidad Docente de Geología Aplicada of the Departamento de Ingeniería y Morfología del Terreno (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid). It was completely anonymous. Its objective was to collect the opinion of the student as a key agent of learning and teaching of the subject. All the work takes place under new teaching/learning criteria approach at the European framework in Higher Education. The results are exceptionally good with 90% of student’s participation and with very high scores in a number of questions as the itineraries, teachers and visited places (range of 4.5 to 4.2 in a 5 points scale). The majority of students are very satisfied (average of 4.5 in a 5 points scale).
Resumo:
Una de las maneras más efectivas para asentar conocimientos se produce cuando, además de realizar un aprendizaje práctico, se intentan transmitir a otra persona. De hecho, los alumnos muchas veces prestan más atención a sus compañeros que al profesor. En la E.T.S.I. Minas de Madrid se ha llevado a cabo un programa de innovación educativa en asignaturas relacionadas con la Geología mediante nuevas tecnologías para mejorar el aprendizaje basado en el trabajo práctico personal del alumno, con la realización de vídeos en el medio físico (campo) en los que explican los aspectos geológicos visibles a diferentes escalas. Estos vídeos se han subido a las plataformas “moodle”, “facebook” y canal “youtube” donde compañeros, alumnos de otras Universidades y personas interesadas pueden consultarlos. De esta manera se pretende que, además de adquirir conocimientos geológicos, los alumnos adquieren el hábito de expresarse en público con un lenguaje técnico. Los alumnos manifestaron su satisfacción por esta actividad, aunque idea del rodaje de vídeos no resultó inicialmente muy popular. Se ha observado una mejora en las calificaciones, así como un incremento de la motivación. De hecho, los estudiantes manifestaron haber adquirido, además de los conceptos geológicos, seguridad a la hora de expresarse en público. Palabras clave: innovación educativa, nuevas tecnologías (TIC), Geología Abstract- Knowledge is gained by practice, but one of the most effective ways is when one tries to transmit it to others. Likewise, students pay more attention to their classmates than to teachers. In the Geological Engineering Department of the Madrid School of Mines, we have run an educational innovation program in courses related to Geology using new technologies (ITC) in order to increase the acquisition of geological knowledge. This program is designed mainly on the basis of individual and group work with video recordings in the field in which students explain geological concepts at various scales. These videos have been uploaded to the “Moodle”, “Facebook” and “YouTube” channel of the Madrid School of Mines, where other students from the same university or elsewhere can view them. Students acquire geological knowledge and the ability to address the general public using technical language. The realization of these videos has been warmly welcomed by students. Notably, they show increased motivation, accompanied by an improvement in grades, although at the beginning this program was not very popular because of student insecurity. Students have expressed that they learnt geological concepts but also gained confidence in public speaking using technical language
Resumo:
This paper demonstrates the importance of a holistic comprehension of the Earth like a planet that is alive, not only in its Biosphere, looking at the atmosphere-ocean-crust-mantle interactions as its different sectorial expressions (climate, fluid-dynamics, morpho-dynamics, tectonics…) following the solar radiation and nuclear geothermal sources of energy. It considers the environmental incidence of different engineering activities to realize their underfeeding as the raison, and leads to that holistic formation as the being of the engineering geology
Resumo:
no.2(1922)
Resumo:
v.16:no.2(1966)
Resumo:
no.10(1929)
Resumo:
v.10:no.13(1952)