943 resultados para Genetic Regulatory Network
Resumo:
Objective: To investigate the role of regulatory T cells in the modulation of long-term immune dysfunction during experimental sepsis. It is well established that sepsis predisposes to development of a pronounced immunosuppression. Nevertheless, the mechanisms underlying the immune dysfunction after sepsis are still not well understood. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Wild-type mice underwent cecal ligation and puncture and were treated with antibiotic during 3 days after surgery. On days 1, 7, or 15 after cecal ligation and puncture, the frequency of regulatory T cells, proliferation of CD4(+) T cells and bacterial counts were evaluated. Fifteen days after cecal ligation and puncture, surviving mice underwent secondary pulmonary infection by intranasal inoculation of nonlethal dose of Legionella pneumophila. Some mice received agonistic glucocorticoid-induced tumor necrosis factor receptor antibody (DTA-1) before induction of secondary infection. Measurements and Main Results: Mice surviving cecal ligation and puncture showed a markedly increased frequency of regulatory T cells in thymus and spleen, which was associated with reduced proliferation of CD4(+) T cells. Fifteen days after cecal ligation and puncture, all sepsis-surviving mice succumbed to nonlethal injection of L. pneumophila. Treatment of mice with DTA-1 antibody reduced frequency of regulatory T cells, restored CD4(+) T cell proliferation, reduced the levels of bacteria in spleen, and markedly improved survival of L. pneumophila infection. Conclusion: These findings suggest that regulatory T cells play an important role in the progression and establishment of immune dysfunction observed in experimental sepsis. (Crit Care Med 2010; 38: 1718-1725)
Resumo:
Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Moraes DJA, Bonagamba LGH, Zoccal DB, Machado BH. Modulation of respiratory responses to chemoreflex activation by L-glutamate and ATP in the rostral ventrolateral medulla of awake rats. Am J Physiol Regul Integr Comp Physiol 300: R1476-R1486, 2011. First published March 16, 2011; doi:10.1152/ajpregu.00825.2010.-Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [Botzinger complex (BotC)] and inspiratory [pre-Botzinger complex (pre-BotC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/BotC) enhanced the tachypneic (120 +/- 9 vs. 180 +/- 9 cpm; P < 0.01) and attenuated the pressor response (55 +/- 2 vs. 15 +/- 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-BotC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/BotC reduced chemoreflex tachypneic response (127 +/- 6 vs. 70 +/- 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/BtC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 +/- 2 vs. 157 +/- 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/BtC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/BtC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.
Resumo:
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.
Resumo:
The genetic constitution of Afro-derived Brazilian populations is barely studied. To improve that knowledge, we investigated the AluYAP element and five Y-chromosome STRs (DYS19, DYS390, DYS391, DYS392, and DYS393) to estimate ethnic male contribution in the constitution of four Brazilian quilombos remnants: Mocambo, Rio das Ras, Kalunga, and Riacho de Sacutiaba. Results indicated significant differences among communities, corroborating historical information about the Brazilian settlement. We concluded that besides African contribution, there was a great European participation in the constitution of these four populations and that observed haplotype variability could be explained by gene flow to quilombos remnants and mutational events in microsatellites (STRs). Am. J. Hum. Biol. 21:354-356, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Concurrent deletion at 1p/19q is a common signature of oligodendrogliomas, and it may, be identified in low-grade tumours (grade II) suggesting it represents an early event in the development of these brain neoplasms. Additional non-random changes primarily involve CDKN2A, PTEN and EGFR. Identification of all of these genetic changes has become an additional parameter in the evaluation of the clinical patients` prognosis, including good response to conventional chemotherapy. Multiple ligation-dependent probe amplification (MLPA) analysis is a new methodology that allows an easy identification of the oligodendrogliomas` abnormalities in a single step. No need of the respective constitutional DNA from each patient is another advantage of this method. We used MLPA kits P088 and P105 to determine the molecular characteristics of a series of 40 oligodendrogliomas. Deletions at I p and 19q were identified in 45% and 65% of cases, respectively. Alterations of EGFR, CDKN2A, ERBB2, PTEN and TP53 were also identified in variable frequencies among 7% to 35% of tumours. These findings demonstrate that MLPA is a reliable technique to the detection of molecular genetic changes in oligodendrogliomas.
Resumo:
Many studies have used genetic markers to understand global migration patterns of our species. However, there are only few studies of human migration on a local scale. We, therefore, researched migration dynamics in three Afro-Brazilian rural communities, using demographic data and ten Ancestry Informative Markers. In addition to the description of migration and marriage structures, we carried out genetic comparisons between the three populations, as well as between locals and migrants from each community. Genetic admixture analyses were conducted according to the gene-identity method, with Sub-Saharan Africans, Amerindians, and Europeans as parental populations. The three analyzed Afro-Brazilian rural communities consisted of 16% to 30% of migrants, most of them women. The age pyramid revealed a gap in the segment of men aged between 20 to 30 yrs. While endogamous marriages predominated, exogamous marriages were mainly patrilocal. Migration dynamics are apparently associated with matrimonial customs and other social practices of such communities. The impact of migration upon the populations` genetic composition was low but showed an increase in European alleles with a concomitant decrease in the Amerindian contribution. Admixture analysis evidenced a higher African contribution to the gene pool of the studied populations, followed by the contribution of Europeans and Amerindians, respectively.
Resumo:
The molecular mechanism that controls the response to phosphate shortage in Neurospora crassa involves four regulatory genes - nuc-2, preg, pgov, and nuc-1. Phosphate shortage is sensed by the nuc-2 gene, the product of which inhibits the functioning of the PREG-PGOV complex. This allows the translocation of the transcriptional factor NUC-1 into the nucleus, which activates the transcription of phosphate-repressible phosphatases. The nuc-2A mutant strain of N. crassa carries a loss-of-function mutation in the nuc-2 gene, which encodes an ankyrin-like repeat protein. In this study, we identified transcripts that are downregutated in the nuc-2A mutant strain. Functional grouping of these expressed sequence tags allowed the identification of genes that play essential roles in different cellular processes such as transport, transcriptional regulation, signal transduction, metabolism, protein synthesis, protein fate, and development. These results reveal novel aspects of the phosphorus-sensing network in N. crassa. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Records of 18,770 Nelore animals, born from 1975 to 2002, in 8 herds participating in the Nelore Cattle Breeding Program, were analyzed to estimate genetic parameters for mature BW. The mature BW were analyzed as a single BW taken closest to 4.5 yr of age for each cow in the data file, considering BW starting from 2 (W2Y_S), 3 (W3Y_S), or 4 (W4Y_S) yr of age or as repeated records, including all BW starting from 2 (W2Y_R), 3 (W3Y_R), or 4 (W4Y_R) yr of age. The variance components were estimated by restricted maximum likelihood, fitting univariate and bivariate animal models, including weaning weight. The heritability estimates were 0.29, 0.34, 0.36, 0.41, 0.44, and 0.46 for W2Y_S, W3Y_S, W4Y_S, W2Y_R, W3Y_R, and W4Y_R, respectively. The repeatability estimates for W2Y_R, W3Y_R, and W4Y_R were 0.59, 0.64, and 0.72, respectively. Larger accuracy values associated with the EBV were obtained in the repeated records models. The results indicated the bivariate repeated records model as the most appropriate for analyzing mature BW.
Resumo:
The total meat yield in a beef cattle production cycle is economically very important and depends on the number of calves born per year or birth season, being directly related to reproductive potential. Accumulated Productivity (ACP) is an index that expresses a cow`s capacity to give birth regularly at a young age and to wean animals of greater body weight. Using data from cattle participating in the ""Program for Genetic Improvement of the Nelore Breed"" (PMGRN - Nelore Brasil), bi-trait analyses were performed using the Restricted Maximum Likelihood method based on an ACP animal model and the following traits: age at first calving (AFC), female body weight adjusted for 365 (BW365) and 450 (BW450) days of age, and male scrotal circumference adjusted for 365 (SC365), 450 (SC450), 550 (SC550) and 730 (SC730) days of age. Median estimated ACP heritability was 0.19 and the genetic correlations with AFC, BW365, BW450, SC365, SC450, SC550 and SC730 were 0.33, 0.70, 0.65, 0.08, 0.07, 0.12 and 0.16, respectively. ACP increased and AFC decreased over time, revealing that the selection criteria genetically improved these traits. Selection based on ACP appears to favor the heaviest females at 365 and 450 days of age who showed better reproductive performance as regards AFC. Scrotal circumference was not genetically associated with ACP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We previously reported a Vietnamese-American family with isolated autosomal dominant occipital cephalocele. Upon further neuroimaging studies, we have recharacterized this condition as autosomal dominant Dandy-Walker with occipital cephalocele (ADDWOC). A similar ADDWOC family from Brazil was also recently described. To determine the genetic etiology of ADDWOC, we performed genome-wide linkage analysis on members of the Vietnamese-American and Brazilian pedigrees. Linkage analysis of the Vietnamese-American family identified the ADDWOC causative locus on chromosome 2q36.1 with a multipoint parametric LOD score of 3.3, while haplotype analysis refined the locus to 1.1 Mb. Sequencing of the five known genes in this locus did not identify any protein-altering mutations. However, a terminal deletion of chromosome 2 in a patient with an isolated case of Dandy-Walker malformation also encompassed the 2q36.1 chromosomal region. The Brazilian pedigree did not show linkage to this 2q36.1 region. Taken together, these results demonstrate a locus for ADDWOC on 2q36.1 and also suggest locus heterogeneity for ADDWOC.