992 resultados para Gases - Solubilidade
Resumo:
Mestrado em Engenharia Química
Resumo:
Mestrado em Segurança e Higiene no Trabalho.
Resumo:
Mestrado em Engenharia Química
Resumo:
Mestrado em Engenharia Química
Resumo:
Mestrado em Engenharia Química.Ramo Tecnologias de Protecção Ambiental
Resumo:
O Vulcão das Furnas é um dos três vulcões centrais activos da ilha de São Miguel e apresenta várias manifestações de vulcanismo secundário, nomeadamente campos fumarólicos, nascentes de águas termais e gasocarbónicas e ainda zonas de desgaseificação difusa através dos solos. Os principais gases libertados nas áreas de desgaseificação difusa são o CO2 e o ²²²Rn. Vários estudos realizados em diversas áreas de desgaseificação têm demonstrado que, para além das propriedades físicas do solo, também as variáveis meteorológicas podem influenciar a emissão dos gases a partir dos solos, favorecendo ou inibindo a sua libertação. Alguns desses estudos identificaram variações sazonais e/ou diárias na emissão de CO2. O presente trabalho pretende complementar os trabalhos realizados anteriormente no Vulcão das Furnas relacionados com a desgaseificação difusa de CO2, tendo como principal objectivo confirmar a existência de variações sazonais no fluxo de CO2. Deste modo, foram (1) analisados os dados temporais das duas estações permanentes de fluxo de CO2 instaladas no Vulcão das Furnas, (2) realizadas quatro campanhas de detalhe no campo fumarólico da freguesia das Furnas e (3) efectuadas oito campanhas ao longo de um perfil definido entre a Lagoa das Furnas e a Ribeira dos Tambores. [...].
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Edificações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Mestrado em Engenharia Química. Ramo optimização energética na indústria química.
Resumo:
O presente trabalho insere-se no âmbito do Mestrado de Engenharia Química, ramo Optimização Energética na Indústria Química e pretende-se efectuar a avaliação energética do Complexo Municipal de Piscinas de Folgosa, localizado no Concelho da Maia, tendo como principais bases os Decretos-Lei 78, 79 e 80 de 04 de Abril 2006. Uma vez que a área útil de pavimento do presente edifício é superior a 1000 m2, encontra-se englobado no conceito de Grande Edifício de Serviços (GES). A escolha do Complexo Municipal de Piscinas de Folgosa para a realização do presente estudo prendeu-se com o facto de ser um objectivo da Câmara Municipal, mais concretamente do Departamento de Conservação e Manutenção de Estruturas Municipais, dar inicio aos procedimentos necessários para a certificação energética dos diversos edifícios Municipais, aliado ao facto das piscinas serem um tipo de edifício desportivo de elevada complexidade em termos de gestão, um grande consumidor de energia e possuidor de uma elevada diversidade de equipamentos. O objectivo principal será o de caracterizar energeticamente o edifício e optimizar os consumos do mesmo, de forma a reduzir, não só os consumos energéticos e respectiva factura, mas também nas emissões dos gases de efeito de estufa (CO2), pelo que a ordem de trabalhos inclui a realização de: - Avaliação Energética de acordo com o n.º1 do artigo 2º e artigo 34º do D. L. 79/2006; - Verificação dos Requisitos de Condução e manutenção das instalações de Aquecimento, Ventilação e Ar Condicionado (AVAC); - Caracterização Energética do Edifício – Índice de Eficiência Energética. A metodologia seguida baseou-se na utilizada para a realização de uma auditoria energética, sendo que foram contempladas as seguintes etapas: estudo pormenorizado da legislação referente à certificação de edifícios; realização de um levantamento de consumos energéticos reais da instalação (com base nas facturas energéticas); das suas características funcionais e levantamento dos vários equipamentos consumidores de energia. O Complexo Municipal de Piscinas de Folgosa é uma instalação cuja média de consumo de energia eléctrica nos últimos três anos foi de 445969 kWh/ano e de 87300 m3 de gás natural, representando um consumo global de energia primária de 174,85 tep/ano. De acordo com o Sistema de Certificação Energética o Índice de Eficiência Energética determinado é de 54,50 kgep/m2 .ano. Uma vez que o IEE determinado é superior ao valor de IEEReferência existentes, o edifício estará obrigado ao cumprimento de um Plano de Racionalização Energética (PRE). É apresentado um conjunto de medidas que visam uma redução do consumo de energia do edifício e consequentemente uma melhoria no Índice de Eficiência Energética.
Resumo:
A Indústria Têxtil do Ave S.A. (ITA) dedica-se, desde 1948, à produção de componentes têxteis para pneus em forma de fio torcido (corda) e tela. Estes componentes são quimicamente activados e impregnados em estufas, possibilitando assim a posterior adesão ao pneu. A máquina de impregnar corda Single End é composta pelos grupos de estiragem, por um recipiente contendo a solução química e por 4 estufas em série. A máquina de impregnar tela Zell é composta pelos grupos de estiragem, pelos acumuladores de saída e entrada, pelos recipientes com as soluções químicas e por um grupo de 7 estufas em série. O aquecimento das estufas é feito através da queima de gás natural. O presente trabalho teve como objectivo a realização de uma auditoria energética à ITA com um especial destaque às máquinas de impregnar corda (Single End) e tela (Zell). As correntes de entrada que contribuem para a potência térmica de impregnação são a combustão do gás natural, o ar de combustão, o ar fresco, o artigo em verde e as soluções químicas. As correntes de saída correspondem aos gases de combustão e exaustão, ao artigo impregnado e às perdas térmicas. A auditoria à máquina Single End mostrou que a potência térmica de impregnação é de 413,1 kW. Dessa potência térmica, 77,2% correspondem à combustão do gás natural, 6,7% ao ar de combustão, 15% ao ar fresco, 0,7% às cordas em verde e 0,4% à solução química. Da potência térmica de saída, 88,4% correspondem aos gases de combustão e exaustão, 3,2% às cordas impregnadas e 8,4% às perdas térmicas. Da auditoria à máquina Zell observou-se que a potência térmica de impregnação é de 5630,7 kW. Dessa potência, 73,3% corresponde à combustão do gás natural, 1,6% ao ar de combustão, 24,5% ao ar fresco, 0,3% à tela em verde e 0,3% às soluções químicas. Da potência térmica de saída, 65,2% correspondem aos gases de combustão e exaustão, 3,1% à tela impregnada e 31,7% às perdas térmicas. Foram sugeridas como medidas de optimização a redução dos caudais de exaustão das estufas e o aumento de temperatura do ar fresco. O aumento da temperatura do ar fresco da máquina de impregnar Single End para 50 ºC, usando ar quente dos torcedores, leva a uma poupança de 0,22 €/h, com um período de retorno do investimento de 13 anos e 4 meses enquanto o aumento para 120 ºC, usando o calor dos gases de combustão e exaustão, reduz os custos em 0,88 €/h, sendo o período de retorno para esse investimento de 2 anos e 6 meses. Na máquina de impregnar Zell, uma redução de 15% no caudal de exaustão numa das estufas leva a ganhos de 3,43 €/h. O aumento de temperatura do ar fresco para 45 ºC, usando o calor de gases de combustão e exaustão, leva a uma poupança de 9,93 €/h sendo o período de retorno para cada uma das duas sugestões de investimento de 5 meses e 9 meses.
Resumo:
A tecnologia de barreiras reactivas é uma alternativa possível de ser implementada para tratamento de águas contaminadas com compostos organoclorados, nomeadamente o tricloroetileno (TCE). O recurso a ferro zerovalente (Fe0) como meio reactivo tem na actualidade inúmeras aplicações, tratando-se de uma reacção de desalogenação por mecanismo de oxidação-redução. Neste trabalho fizeram-se estudos em batch da reacção entre o Fe0 e o TCE de forma a conhecer os parâmetros cinéticos. A natureza e a área da superfície do ferro provaram ser determinantes na velocidade da reacção. Foi possível verificar que para o sistema ferro comercial / TCE a ordem da reacção é inferior a um, e a constante cinética da ordem de 10-2 Lm-2h-1. Para simular uma barreira reactiva, projectaram-se e construíram-se colunas, as quais foram cheias com areia e ferro depois de devidamente misturados, uma vez que se tratou da disposição a que corresponderam melhores eficiências de redução do TCE. Não foi possível estabelecer o mecanismo da reacção, nem conhecer os parâmetros cinéticos, pelas dificuldades experimentais encontradas na análise do TCE e pelo facto de se tratar de uma reacção muito lenta. A cromatografia gasosa com detector de ionização de chama provou ser o método mais apropriado para doseamento do TCE em águas contaminadas, nas condições usadas neste estudo. A elevada volatilização do TCE e a baixa solubilidade em água contribuíram para as dificuldades operacionais encontradas.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica Ramo de processos químicos
Resumo:
A noção de Economia relativa ao Hidrogénio no vocabulário dos líderes políticos e empresariais tem vindo a mudar sobretudo pela preocupação da poluição global, segurança energética e mudanças climáticas, para além do crescente domínio técnico dos cientistas e engenheiros. O interesse neste composto, que é o elemento mais simples e abundante no universo, está a crescer, devido aos avanços tecnológicos das células de combustível – as potenciais sucessoras das baterias dos aparelhos portáteis eletrónicos, centrais elétricas e motores de combustão interna. Existem métodos já bem desenvolvidos para produzir o hidrogénio. Contudo, destacase a eletrólise da água, não só por ser um método simples mas porque pode utilizar recursos energéticos renováveis, tais como, o vento ou os painéis fotovoltaicos, e aumentar a sua eficiência. Os desafios para melhorar a utilização deste método consistem em reduzir o consumo, a manutenção e os custos energéticos e aumentar a confiança, a durabilidade e a segurança. Mais ainda, consistem em rentabilizar o subproduto oxigénio pois é um gás industrial e medicinal muito importante. Neste trabalho, estudou-se a viabilidade económica da instalação de uma unidade de produção de hidrogénio e oxigénio puros por eletrólise da água, utilizando como fonte energética a energia solar, na empresa Gasoxmed – Gases Medicinais S.A., pretendendo num futuro próximo, comercializar o hidrogénio como fonte de energia, e por outro lado, aproveitar o subproduto oxigénio para utilização industrial. Projetou-se assim uma unidade utilizando um eletrolisador da marca Proton, modelo C30, com capacidade de produção gasosa de 3 kg/h (30 m3/h) de hidrogénio e 20 kg/h (15 m3/h) de oxigénio. Os gases produzidos são comprimidos num compressor da marca RIX a 200 bares para posterior armazenamento em cilindros pressurizados. Dimensionou-se ainda um sistema de miniprodução fotovoltaico com potência 250 kW para alimentar eletricamente a instalação. A realização do projeto na nova área de produção necessitará de 1.713.963€, os quais serão adquiridos por empréstimo bancário. Definiram-se todos os custos fixos associados ao projeto que perfazem um total de 62.554€/mês para os primeiros 5 anos (duração do crédito bancário) findo o qual diminuirão para 21.204€/mês. Da comercialização do hidrogénio, do oxigénio industrial e da eletricidade produzida no sistema de miniprodução de 250 kW, prevê-se um lucro mensal de 117.925€, perfazendo assim um total líquido mensal positivo de 55.371€ durante os primeiros 5 anos e a partir daí de 96.721€/mês, resultando uma amortização do investimento inicial no final do 3º ano.
Resumo:
Actualmente, a sociedade depara-se com um enorme desafio: a gestão dos resíduos sólidos urbanos. A sua produção tem vindo a aumentar devido à intensificação das actividades humanas nas últimas décadas. A criação de um sistema de gestão dos resíduos é fundamental para definir prioridades nas acções e metas para que haja uma prevenção na produção de resíduos. Os resíduos sólidos urbanos quando dispostos de forma inadequada podem provocar graves impactos ambientais, tendo sido neste trabalho demonstrado que através de uma gestão eficiente destes é possível aproveitar o potencial energético do biogás e consequentemente diminuir o consumo de combustíveis fósseis reduzindo o impacto ambiental. Os aterros sanitários devem funcionar como a ultima etapa do sistema de tratamento dos resíduos sólidos urbanos e são uma alternativa a ter em conta se forem tomadas todas as medidas necessárias. Estima-se que os aterros sejam responsáveis pela produção de 6-20% do metano existente e que contribuam com 3-4% da produção anual de gases efeito de estufa provenientes de actividades antropogénicas1. É, portanto, fundamental proceder a uma impermeabilização do solo e à criação de condições para recolha do biogás produzido durante a decomposição dos resíduos. Foi estimada a produção de biogás, de acordo com o modelo “LandGEM”, no entanto comparando esta produção com a produção medida pelo explorador, constatou-se uma diferença significativa que pode ser justificada pelo: modo de funcionamento do aterro (longos períodos de paragem); desvio dos resíduos rapidamente biodegradáveis para valorização; a existência de uma percentagem superior ao normal de oxigénio no biogás; a utilização de escórias e cinzas, e a correspondente redução da humidade devido ao compactamento exercido sobre os resíduos durante a sua deposição. Visto tratar-se de um estudo de viabilidade económica da valorização do biogás, foram propostos três cenários para a valorização do biogás. O 1º cenário contempla a instalação de um sistema gerador de energia para comercialização junto da Rede Eléctrica Nacional. O 2º Cenário contempla a instalação de um sistema alternativo de alimentação à caldeira da central de valorização energética de forma a substituir o combustível utilizado actualmente. E o 3º Cenário vem de encontro com os resultados observados actualmente onde se verifica uma reduzida produção/recolha de biogás no aterro. Assim é proposto um sistema gerador de energia que garanta o auto-consumo da exploração do aterro (26 MWh/ano). Qualquer um dos cenários apresenta uma VAL negativa o que leva a concluir que não são viáveis. No entanto, através da análise de sensibilidade, verificamos que estes são claramente afectados por factores como o benefício e o investimento anual, concluindo-se que com alterações nos factores de cálculo, como por exemplo, um aumento no consumo de combustível auxiliar da caldeira (2º cenário), ou com um aumento da factura eléctrica (3º cenário), ou com o aumento do tempo de retorno do investimento inicial(1º cenário), os projectos podem-se tornar viáveis. Por fim importa referir que independentemente da valorização é fundamental continuar a eliminar a máxima quantidade de metano produzida para tentar diminuir o impacto que este tem sobre o ambiente.