975 resultados para GUANIDINIUM CATION
Resumo:
The sorption and desorption of Cu and Cd by two species of brown macroalgae and five species of microalgae were studied. The two brown macroalgae, Laminaria japonica and Sargassum kjellmanianum, were found to have high capacities at pHs between 4.0 and 5.0 while for microalgae, optimum pH lay at 6.7. The presence of other cations in solution was found to reduce the sorption of the target cation, suggesting a competition for sorption sites on organisms. Sorption isotherms obeyed the Freundlich equation, suggesting involvement of a multiplicity of mechanisms and sorption sites. For the microalgae tested, Spirulina platensis had the highest capacity for Cd, followed by Nannochloropsis oculata, Phaeodactylum tricornutum, Platymonas cordifolia and Chaetoceros minutissimus. The reversibility of metal sorption by macroalgae was examined and the results show that both HCl and EDTA solutions were very effective in desorbing sorbed metal ions from macroalgae, with up to 99.5% of metals being recovered. The regenerated biomass showed undiminished sorption performance for the two metals studied, suggesting the potential of such material for use in water and wastewater treatment. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Quatemized chitosan: N-(2-hydroxyl-phenyl)-NN-dimethyl chitosan (NHPDCS), N-(5-chloro-2-hydroxyl-phenyl)-NN-dimethyl chitosan (NCHPDCS), N-(2-hydroxyl-5-nitro-phenyl)-NN-dimethyl chitosan (NHNPDCS) and N-(5-bromic-2-hydroxyl-phenyl)-NN-dimethyI chitosan (NBHPDCS) were synthesized and their antifungal activities against Botrytis cinerea Pers. (B. cinerea Pers.) and Colletotrichum lagenarium (Pass) Ell.et halst (C. lagenarium (Pass) Ellet halst) were investigated. The results indicated that the quaternized chitosan derivatives had better inhibitory effects than chitosan, and the antifungal activities should be affected by the cation in these compounds. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The title coordination polymer, {[Ni3Na(OH)(C9H3O6)(2)( H2O)(11)] center dot 1.5H(2)O}(n), is built up from three independent Ni-II ions and one Na-I cation bridged by benzene-2,4,6-tricarboxylate ( BTC) ligands and water molecules. Three Ni-II ions are bridged by three bidentate carboxylate groups of three BTC ligands, two aqua ligands and one OH- unit, to form a trinuclear metal cluster. The Na-I cation is bonded to the Ni-II cluster by two bridging water molecules. One of the three BTC ligands bridges neighbouring clusters into one-dimensional chains, which are further connected through a complex hydrogen-bonding scheme, forming a three-dimensional suprastructure. The title complex is isomorphous with the previously reported Co-II complex.
Theoretical investigation on the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface
Resumo:
In this paper, the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface were investigated by using cluster (Gaussian 03) and periodic (DMol(3)) ab initio calculations. Si(111) surface was described with cluster models (Si14H17 and Si22H21) and a four-silicon layer slab with periodic boundary conditions. The effect of basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111) surface are large, suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface. With the increase of number, water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation. The Ag+ cation in aqueous solution will safely attach to the clean Si(111) surface.
Resumo:
To model the adsorption of Na+ in aqueous solution on the semiconductor surface, the interactions of Na+ and Na+(H2O)(n) (n = 1-6) with a clean Si(111) surface were investigated by using hybrid density functional theory (B3LYP) and Moller-Plesset second-order perturbation (MP2) methods. The Si(111) surface was described with Si8H12, Si16H20, and Si22H21 Cluster models. The effect of the basis set superposition error (BSSE) was taken into account by applying the counterpoise (CP) correction. The calculated results indicated that the interactions between the Na+ cation and the dangling bonds of the Si(111) surface are primarily electrostatic with partial orbital interactions. The magnitude of the binding energies depends weakly on the adsorption sites and the size of the clusters. When water molecules are present, the interaction between the Nal and Si(I 11) surfaces weakens and the binding energy has the tendency to saturate. On a Si22H21 cluster described surface, the optimized Na+-surface distance for Na+(H2O)(5) adsorbed at on-top site is 4.16 angstrom and the CP-corrected binding energy (MP2) is -35.4 kJ/mol, implying a weakly adsorption of hydrated Na+ cation on clean Si(111) surface.
Resumo:
概要介绍工业无线网络的标准化进程,详细介绍了用于过程自动化的工业无线网络WIA规范的网络构成、拓扑结构、协议体系和关键技术,并将WIA-PA与WirelessHART、ISASP100两大工业无线标准进行了比较分析。
Resumo:
设计制作了一种基于多处理器的移动机器人分布式超声环境探测系统.该系统由上位工作模式控制模块和下位智能超声传感器阵列组成.下位智能超声传感器选用收发一体式超声传感器,每个传感器均由独立的微处理器控制,完成实时数据处理、抗干扰处理、故障报警以及并行数据通信等功能.上位工作模式控制模块可以根据不同的控制策略,使下位传感器阵列采用“阈值比较法”和“改进型递推均值滤波”算法及EERUF方法并行循环工作模式,实现不同方向传感器分组并行工作,提高了探测的实时性和准确性,以及对移动机器人控制的鲁棒性.仿真和实验的结果都验证了该系统的可靠性和有效性.
Resumo:
从特殊票据———火车票票面字符的特点出发 ,将笔划复杂性指数与四周面积编码结合起来作为粗分类的分类特征 采用C -均值聚类算法进行预分类 最后生成分类特征库———分类字典 .得到了预期的分类效果 ,正确分类率达到 95 % .
Resumo:
为满足轮桨腿一体化两栖机器人控制系统各模块间信息交换的实时性、灵活性、可扩展性和可靠性的要求,将CAN总线应用于轮桨腿一体化两栖机器人控制系统中。从硬件和软件两方面,介绍了CAN总线在轮桨腿一体化两栖机器人中的应用方案,设计了基于ARM7处理器的CAN总线控制节点,提出了适用于两栖机器人的CAN总线应用层协议方案。
Resumo:
The Taklamakan Desert, lying in the center Tarim Basin of sourthern Xinjiang, is the largest sand sea in China and well known in the world as its inclemency. For understanding the formation and evolution of the Taklamakan Desert, it is very important to identify the provenance of aeolian sediments in the extensive dune fields, but the opinions from earlier studies are quite different. In this study, we examined the major- and trace-element compositions, mineral compositions and grain-size distributions of some Quaternary aeolian and nonaeolian sediments collected from the Taklamakan Desert, together with the variation of chemical and mineralogical compositions of different grain-size fraction. At the same time, we also studied the chemistries of some natural water samples (river water and groundwater) with the items of TDS, pH, Alkalinity, conductivity and major cation and anion compositions. Our results of analysis show some significant opinions as follow: Most of the frequency-distribution curves of grain size of dune sand samples are simgle peak, but that of the river and lacustrine sediment are most double peak or multi-peak. The grain-size distribution of dunefield sand changed gradually from north to south with the major wind direction in large scale, but there are many differences in regional scale. The major, REE, trace element compositions and mineral compositions are very different among the coarse, fine fraction and bulk samples due to the influence of grain-size. Most of the fine fractions are geochemically homogenous, but the coarse fractions and bulk samples are heterogenous. All the surface and ground waters are limnetic or sub-salty, their chemical compositions are mainly controlled by rock-weathering and crystallization- evaporation processes, and mainly come from the evaporate, while the contributions of the carbonate and silicate are little, excluding the influence on oasis water by carbonate. The mineral compositions of selected samples are stable, mainly composed of the strongly resistant mineral types. The mineral maturity of them are more immature at whole compared with other sandy sediments in the world, and they have experienced less degree of chemical weathering and recycling, being lying in the early stage of continental weathering. Among these sediments, the river sediments are relatively primitive. The sources of these sediments are maybe mainly terrigenous, silicic and subaluminous/ metalunious rocks, such as the granodiorite and its metamorphic rock. The geochemical compositions of dunefield sand are similar with those of the river sediments and dune sands near the river way; There are not only the resemblances but also the differences on geochemistry and granularity between north and south dunesands; The sediments from same section have different age but same trace-element compositions; The sediments from the south edge of Tarim Basin are all somewhat geochemically similar with the palaeo-river-sediment on the south edge of studying area. The REE data support the idea that the south dunesands are a little older than the north dunesands, and the tectonic settings of source area are mainly active continental margin based on the major-element compositions, so they indicate that the sediment of Taklamakan Desert maybe come mainly from the rock-weathering production of north part of the Kunlun Mountains. Compared with the sands of other dune field in north of China, the sands of the Taklamakan Desert are distinct by REE composition, but similar with the Luochuan loess, center China, and the two sandy dusts of Beijing, eastern China.
Resumo:
The unsaturated expansive soil is a hotspot and difficulty in soil mechanics inland and outland. The expansive soil in our China is one of the widest in distributing and greatest in area, and the disaster of expansive soil happens continually as a result. The soil mechanics test, monitor, numerical simulation and engineering practice are used to research swell and shrinkage characteristic, edge strength characteristic and unsaturated strength characteristic of Mengzi expansive soil. The seep and stability of the slope for expansive soil associated with fissure are analyzed and two kinds of new technique are put forward to be used in expansive soil area, based on disaster mechnics proposed of the slope.The technique of reinforcement in road embankment is optimized also. Associated with engineering geology research of Mengzi expansive soil, mineral composition, chemical composition, specific area and cation content, dissolubility salt and agglutinate, microcosmic fabric characteristic, cause of formation and atmosphere effect depth are analyzed to explain the intrinsic cause and essence of swell and shrinkage for expansive soil. The rule between swell-shrinkage and initial state, namely initial water content, initial dry density and initial pressure, can be used to construction control. Does Response model is fit to simulate the rule, based on ternary regression analysis. It has great meaning to expansive soil engineering in area with salt or alkali. The mechanics under CD, CU and GCU of expansive soil is researched by edge surface theory to explain the remarkable effect of consolidation pressure, initial dry density, initial water content, cut velocity, drainage and reinforcement to the edge strength characteristic. The infirm hardening stress strain curves can be fitted with hyperbola model and the infirm softening curves can be fitted with exponential model. The normalization theory can be used to reveal the intrinsic unity of the otherness which is brought by different methods to the shear strength of the same kinds of samples. The unsaturated strain softening characteristic and strength envelope of remolding samples are researched by triaxial shear test based on suction controlled, the result of which is simulated by exponential function. The strength parameters of the unsaturated samples are obtained to be used in the unsaturated seep associated with rainfall. The elasticity and plasticity characters of expansive soil are researched to attain the model parameters by using modified G-A model. The humidification destroy characteristic of expansive soil is discussed to research the disaster mechanism of the slope with the back pressure increasing and suction decreasing under bias pressure consolidation. The indoor and outdoor SWCCs are measured to research the effect factors and the rule between different stress and filling environment. The moisture absorption curves can express the relationship between suction and water content in locale. The SWCCs of Mengzi expansive soil are measured by GDS stress path trixial system. The unsaturated infiltration function is gained to research seep and stability of the slope of expansive soil. The rainfall infiltration and ability of slope considering multifarious factors are studied by analyzing fissure cause of Mengzi expansive soil. The mechanism of the slope disaster is brought forward by the double controlling effect between suction and fissure. Two new kinds of technique are put forward to resolve disaster of expansive soil and the technique of reinforcement on embankment is optimized, which gives a useful help to solving engineering trouble.
Resumo:
The biothermocatalytic transitional zone gas is a new type of natural gas genetic theory, and also an clean, effective and high quality energy with shallow burial depth, wide distribution and few investment. Meanwhile, this puts biothermocatalytic transitional zone gas in important position to the energy resource and it is a challenging front study project. This paper introduces the concept, the present situation of study and developmental trend about biothermocatalytic transitional zone gas in detail. Then by using heat simulating of source rocks and catalysis mechanism analysis in the laboratory and studying structural evolution, sedimentation, diagenesis and the conditions of accumulation formation and so on, this paper also discusses catalytic mechanism and evolutionary model of the biothermocatalytic transitional zone gas formation, and establishes the methods of appraisal parameter and resources prediction about the biothermocatalytic transitional zone gas. At last, it shows that geochemical characteristics and differentiated mark of the biothermocatalytic transitional zone gas, and perfect natural gas genetic theory, and points out the conditions of accumulation formation, distribution characteristics and potential distribution region on the biothermocatalytic transitional zone gas m China. The paper mainly focuses on the formation mechanism and the resources potential about the biothermocatalytic transitional zone gas. Based on filed work, it is attached importance to a combination of macroscopic and microcosmic analysis, and the firsthand data are obtained to build up framework and model of the study by applying geologic theory. Based on sedimentary structure, it is expounded that structural actions have an effect on filling space and developmental cource of sediments and evolution of source rocks. Carried out sedimentary environment, sequence stratigraphy, sedimentary system and diagenesis and so on, it is concluded that diagenesis influences developmental evolution of source rocks, and basic geologic conditions of the biothermocatalytic transitional zone gas. Applying experiment simulating and catalytic simulating as well as chemical analysis, catalytic mechanism of clay minerals is discussed. Combined diagenecic dynamics with isotope fractionation dynamics, it is established that basis and method of resource appraisal about the biothermocatalytic transitional zone gas. All these results effectively assess and predict oil&gas resources about the biothermocatalytic transitional zone gas-bearing typical basin in China. I read more than 170 volumes on the biothermocatalytic transitional zone gas and complete the dissertation' summary with some 2.4 ten thousand words, draw up study contents in some detail and set up feasible experimental method and technologic course. 160 pieces of samples are obtained in oilfield such as Liaohe, Shengli, Dagang and Subei and so on, some 86 natural gas samples and more than 30 crude oil samples. Core profiles about 12 wells were observed and some 300 geologic photos were taken. Six papers were published in the center academic journal at home and abroad. Collected samples were analysised more than 1000 times, at last I complete this dissertation with more than 8 ten thousand words, and with 40 figures and 4 plates. According to these studies, it is concluded the following results and understandings. 1. The study indicates structural evolution and action of sedimentary basin influence and control the formation and accumulation the biothermocatalytic transitional zone gas. Then, the structural action can not only control accommodation space of sediments and the origin, migration and accumulation of hydrocarbon matters, but also can supply the origin of energy for hygrocarbon matters foramtion. 2. Sedimentary environments of the biothermocatalytic transitional zone gas are lake, river and swamp delta- alluvial fan sedimentary systems, having a warm, hot and humid climate. Fluctuation of lake level is from low to high., frequency, and piling rate of sedimentary center is high, which reflect a stable depression and rapidly filling sedimentary course, then resulting in source rocks with organic matter. 3. The paper perfects the natural gas genetic theory which is compound and continuous. It expounds the biothermocatalytic transitional zone gas is a special gas formation stage in continuous evolutionary sequence of organic matter, whose exogenic force is temperture and catalysis of clay minerals, at the same time, having decarbxylation, deamination and so on. 4. The methodology is established which is a combination of SEM, TEM and Engery spectrum analysis to identify microstructure of crystal morphology about clay minerals. Using differential thermal-chromatographic analysis, it can understand that hydrocarbon formation potential of different typies kerogens and catalytic method of all kinds of mineral matrix, and improve the surface acidity technology of clay minerals measured by the pyridine analytic method. 5. The experiments confirm catalysis of clay minerals to organic matter hygrocarbon formation. At low temperature (<300 ℃), there is mainly catalysis of montmorillonite, which can improve 2-3 times about produced gas of organic matters and the pyrolyzed temperature decreased 50 ℃; while at the high temperature, there is mainly catalysis of illite which can improve more than 2 times about produced gas of organic matters. 6. It is established the function relationship between organic matter (reactant) concentration and temperature, pressure, time, water and so on, that is C=f (D, t). Using Rali isotope fractionation effect to get methane isotope fractionation formula. According to the relationship between isotope fractionation of diagenesis and depth, and combined with sedimentary rate of the region, it is estimated that relict gas of the biothermocatalytic transitional zone gas in the representative basin. 7. It is revealed that hydrocarbon formation mechanism of the biothermocatalytic transitional zone gas is mainly from montmorillonite to mixed minerals during diagenesis. In interlayer, a lot of Al~(3+) substitute for Si~(4+), resulting in a imbalance between surface charge and interlayer charge of clay minerals and the occurrence of the Lewis and Bronsted acid sites, which promote to form the carbon cation. The cation can form alkene or small carbon cation. 8. It is addressed the comprehensive identification mark of the biothermo - catalytic transitional zone gas. In the temproal-spatial' distribution, its source rocks is mainly Palaeogene, secondly Cretaceous and Jurassic of Mesozoic, Triassic, having mudy rocks and coal-rich, their organic carbon being 0.2% and 0.4% respectively. The vitrinite reflection factor in source rocks Ro is 0.3-0.65%, a few up to 0.2%. The burial depth is 1000-3000m, being characterized by emerge of itself, reservoir of itself, shallow burial depth. In the transitional zone, from shallow to deep, contents of montmorillonites are progressively reduced while contents of illites increasing. Under SEM, it is observed that montmorillonites change into illite.s, firstly being mixed illite/ montmorillonite with burr-like, then itlite with silk-like. Carbon isotope of methane in the biothermocatatytic transitional zone gas , namely δ~(13)C_1-45‰- -60 ‰. 9. From the evolutionary sequence of time, distribution of the biothermocatalytic transitional zone gas is mainly oil&gas bearing basin in the Mesozoic-Neozoic Era. From the distribution region, it is mainly eastern stuctural active region and three large depressions in Bohaiwang basin. But most of them are located in evolutionary stage of the transitional zone, having the better relationship between produced, reservoir and seal layers, which is favorable about forming the biothermocatalytic transitional zone gas reservoir, and finding large gas (oil) field.
Resumo:
River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.
Resumo:
The Ultrahigh Pressure Metamorphic (UHPM) eclogite, which was resulted from deep subduction of crustal continent, is very significant due to its continental dynamic implications. Further more, this kind of rocks experienced great P-T, fluid and stresses changes during its forming and exhumation, causing mineral reactions occur intensively, which resulted in a lot of fantastic micro-texture. The micro-texture was preserved duo to a rapid exhumation of the eclogite. This PhD dissertation takes such micro-textures in 10 Donghai eclogite samples South Sulu UHPM terrene, as research object to reveal the transformation of the eclogite to amphibolite. Microscope and Scanning Electron Microscope were employed to observe the micro-texture. Basing on microprobe analysis of minerals, the ACF projections and iso-con analysis were used to uncover the mineral reactions during the transformation. Micro-texture observation (both of Microcopy and Electron Scanning Microscope), demonstrated: l.The peak mineral assemblage of the researched Donghai eclogites is garnet + omphacite + rutile (+ kyanite + aptite +coesite). 2.The transformation of the Donghai eclogite to amphibolite can be divided into two stages: The earlier one is Symplectization, resulting in the forming of diopside + albite (+magnetite) symplectite that occurred only along the boundary between two adjacent omphacite grains. Other minerals were not involved in such reaction. The latter stage is Fluid-Infiltration of the eclogite, which was caused by fluid-intrusion. The infiltration is demonstrated by amphibolization of the symplectite, decomposition of garnet and the forming of some hydrous minerals such as phengite and epidote, and resulted in an amphibole + plagioclase + phengite + epidote or ziosite assemblage. Basing on microprobe analysis of the minerals, ACF projections indicated: In the ACF diagrams, the two joint lines of peak Grt + Omp and Dio + Ab crossed at Omp projection-point, indicating that the garnet had not taken part in the forming reaction of the Dio + Ab symplectite, just like that had been pointed out by micro-texture observation. In the ACF diagrams, the hornblende + plagioclase + epidote + phengite quadrilateral intersected with Dio + Ab + Grt triangle, demonstrating that the hydrous mineral assemblage was formed by fluid infiltration through garnet, diopside and albite. Iso-con (mass-balance) analysis of the symplectization and infiltration reveals: 1.The symplectization of the omphacite has a very complex mass exchange: Some symplectite gained only silicon from its surroundings; and some one requires Ca, but provides Na to its surroundings; while other symplectite provides Ca, Mg and Fe to its surroundings. 2.The infiltration cause variable mass exchanges occurring among the garnet, diopside and albite: In some eclogite sample, no mass, except H2O, exchange occurred during the infiltration. Meanwhile, there was not any hydrous mineral except hornblende formed in the sample accordingly. In some samples, the mass exchange among the three minerals is complex: amphibolization of the diopside in a symplectite gained Al from garnet, and provided Si and Ca to its surrounding, resulting in a Si, Ca and Al-rich fluid. Correspondingly, there was a lot of phengite and ziosite occurred in the sample. In other samples, the amphibolization of a symplectite provided Fe and Mg besides Si and Ca to its surrounding while gained Al. In such kind of sample, epidote occurred within the hydrous mineral assemblage. Synthesizing the micro-texture observation, ACF analysis and iso-con analysis, we deduced the transformation procedure as following: 1. A symplectite after an omphacite was resulted by one, or two, or all of following mineral reactions together: Jd (Ca-Tsch) +SiO2=Ab (An) (1) 4NaA IS i.A+CaO=2NaAlS i308+Na20+CaAl2S 1208 (2) 2NaAlSi2OB (Jd in Omp)+CaMgSi;,0B(Dio in Omp)-2NaAlSi:,O"(Ab)+Ca0+Mg0 (3) 2(CaAl2Si0fi) (Ca-tsch in Omp)+CaFeSi2O6(Hed in 0mp)-H>2CaAl2Si208(An)+Ca0 + FeO (4) A CO2-rich fluid is suggested as cataclysm for the above reactions, which largely increased the mobility of Ca, Mg and Na resulted from reaction (2), (3) and (4). The immobile product Fe2* combined with rutile to form ilmenite, resulting in rutile + ilmenite symplectite. Or, the Fe was precipitated as hematite locally. A procedure of the fluid infiltration as following is suggested: I .A hydrous fluid intruded into the eclogite, and reacted first with garnet to form hornblende and extra Al, resulting in a hornblende film around the garnet grain and an Al-rich fluid. 2.The Al-rich fluid infiltrated through the symplectite, OH" and part of the Al in the fluid combined with Dio while some Si and Ca in the Dio were dissolved made the Dio transferred to amphibole. Meanwhile, plagioclase-type cation exchange occurred between the fluid and plagioclase in the symplectite, making the plagioclase have a higher An-content. 3.Above infiltration and cation exchange resulted in an Al, Si, Ca (and K, providing the primary hydrous fluid contain K)-rich fluid. 4.Under suitable conditions, the solute in the fluid precipitated to form phengite firstly. After the K element in the fluid was consumed up, ziosite or epidote was formed. If the fluid did not contain any K. element, only ziosite or epidote was precipitated. For those eclogites, where all omphacite had been replaced by symplectite before infiltration, neither element exchange occurred, nor did phengite or epidote form during the infiltration. At the last stage, the garnet was oxidized and breakdown: garnet + H2O = epidote + hornblende + hematite, due to more and more fluid intruding into the eclogite. At this time, all the peak minerals were replaced by amphibolite-phase ones, and the eclogite transformed to an amphibolite completely. Tentative pressure calculation indicates that the infiltration occurred at 3-6kbar (about 10-20km depth), where the deformation mechanics transformed from brittle to ductile yield. At such depth, the surface water can permeate the rocks through fault system, causing a rapid cooling.
Resumo:
Low resistivity reservoir is a special reservoir which is different from normal reservoir in identification and evaluation.Through core experiment and analysis, the achievement of which resistivity is resulted from clay additive electric conductivities and high bound water saturation in Junggar basin is gained. For accurately evaluating low resistivity, a good many of experiment have been completed, such as resistivity index and formation factor in hi^jher temperature and higher pressure, semi-permeability board, cation exchange, bound water, NMR (nucleus magnetism response), non-Nad water in different temperature and salinity, the experiments result show that lower resistivity has complex relation with these electric-parameters and chloric ion content in non-NaCl water.Based on comprehensive interpretation of NMR and normal resistivity data, the volume of moved water, bound water, moved oil and residual oil in the strata can be determined quantitatively and which have significant influence on reservoir recognition and perforation optimized.Experiment data (SEM mold, thin section, X ray diffraction, mercury penetration) can be used to analysis low resistivity forming and the relation between low resistivity and pore texture, to set up relation between porosity, permeability and petrophysical property. The reservoir was sorted, evaluated and described. The oil bedding in southern margin of Junggar basin is low porosity, low resistivity reservoir.Based on invasion theory of electric well-logging, modelling and inversion of resistivity well-logging are accomplished. For enhancing low resistivity resulted from higher bound water saturation and cation exchange, invasion period, invasion radius, the relation between fluid distribution in pore and response of laterolog logging have been studied. Virgin zone resistivity, invasion zone resistivity and invasion radius were inversed and which enhanced evaluation accuracy of reservoir. The method was used to process well-logging data in Luliang oilfield and southern margin in Junggar basin, and reservoir resistivity was enhanced effectively, appropriate oil saturation gained and it has better effect on oil exploration.