861 resultados para GLUCOSE BIOSENSOR
Resumo:
To determine whether glucose tolerance varies throughout the day in people with impaired glucose tolerance (IGT). We studied 15 healthy IGT, and 18 matched normal glucose tolerant (NGT) individuals. Blood samples were taken every 30-120 min during a 24 h period in which all individuals had three mixed meals and nocturnal sleep. We measured glucose, free fatty acids, specific insulin, intact proinsulin, cortisol and growth hormone. Variable responses were considered as concentrations and areas under the curves. Comparison between the groups was by Student's t-test, Mann-Whitney, and analysis of variance. Higher total glucose response, inappropriate normal total insulin response, and unproportionally increased proinsulin total response were observed in the IGT group. Lower glucose tolerance occurred in IGT after dinner, as in the NGT, and after breakfast associated with increased insulin response after breakfast, and similar proinsulin response after all three meals. IGT had higher glucose response than NGT after breakfast and lunch, similar insulin responses, and increased proinsulin-insulin ratio after all three meals. Data from this study demonstrate that IGT individuals present lower glucose tolerance in the evening, as those with NGT, and in the morning, as reported in patients with type 2 diabetes. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The Japanese Brazilian population has one of the highest prevalences of diabetes worldwide. Despite being non-obese according to standard definitions, their body fat distribution is typically central. We investigated whether a subset of these subjects had autoantibodies that would suggest a slowly progressive form of type 1 diabetes. A total of 721 Japanese Brazilians (386 men) in the 30- to 60-year age group underwent clinical examination and laboratory procedures, including a 75-g oral glucose tolerance test and determinations of serum autoantibodies. Antibodies to glutamic acid decarboxylase (GADab) were determined by radioimmunoassay and to thyroglobulin (TGab) and thyroperoxidase (TPOab) by flow-cytometry assays. Mean body mass index was 25.2 ± 3.8 kg/m2, but waist circumference was elevated according to the Asian standards. Diabetes, impaired glucose tolerance, and impaired fasting glycemia were found in 31%, 22%, and 22%, respectively, and 53% of the subjects had metabolic syndrome. Glutamic acid decarboxylase (GADab) was positive in 4.72%, TGab in 9.6%, and TPOab in 10% of the whole sample. When participants were stratified according to the presence of thyroid antibodies, similar frequencies of GADab were found in positive and negative groups. The prevalence rates of glucose metabolism disturbances did not differ between GADab positive and negative groups. Our data did not support the view that autoimmune injury could contribute to the high prevalence of diabetes seen in Japanese Brazilians, and the presence of co-morbidities included in the spectrum of metabolic syndrome favors the classification as type 2 diabetes.
Resumo:
Objective: To evaluate data from patients with normal oral glucose tolerance test (OGTT) results and a normal or impaired glycemic profile (GP) to determine whether lower cutoff values for the OGTT and GP (alone or combined) could identify pregnant women at risk for excessive fetal growth. Methods: We classified 701 pregnant women with positive screening for gestational diabetes mellitus (GDM) into 2 categories - (1) normal 100-g OGTT and normal GP and (2) normal 100-g OGTT and impaired GP - to evaluate the influence of lower cutoff points in a 100-g OGTT and GP (alone or in combination) for identification of pregnant women at excessive fetal growth risk. The OGTT is considered impaired if 2 or more values are above the normal range, and the GP is impaired if the fasting glucose level or at least 1 postprandial glucose value is above the normal range. To establish the criteria for the OGTT (for fasting and 1, 2, and 3 hours after an oral glucose load, respectively), we considered the mean (75 mg/dL, 120 mg/dL, 113 mg/dL, and 97 mg/dL), mean plus 1 SD (85 mg/dL, 151 mg/dL, 133 mg/dL, and 118 mg/dL), and mean plus 2 SD (95 mg/dL, 182 mg/dL, 153 mg/dL, and 139 mg/dL); and for the GP, we considered the mean and mean plus 1 SD (78 mg/dL and 92 mg/dL for fasting glucose levels and 90 mg/dL and 130 mg/dL for 1- or 2-hour postprandial glucose levels, respectively). Results: Subsequently, the women were reclassified according to the new cutoff points for both tests (OGTT and GP). Consideration of values, in isolation or combination, yielded 6 new diagnostic criteria. Excessive fetal growth was the response variable for analysis of the new cutoff points. Odds ratios and their respective confidence intervals were estimated, as were the sensitivity and specificity related to diagnosis of excessive fetal growth for each criterion. The new cutoff points for the tests, when used independently rather than collectively, did not help to predict excessive fetal growth in the presence of mild hyperglycemia. Conclusion: Decreasing the cutoff point for the 100-g OGTT (for fasting and 1, 2, and 3 hours) to the mean (75 mg/dL, 120 mg/dL, 113 mg/dL, and 97 mg/dL) in association with the GP (mean or mean plus 1 SD-78 mg/dL and 92 mg/dL for the fasting state and 90 mg/dL and 130 mg/dL for 1- or 2-hour postprandial values-increased the sensitivity and specificity, and both criteria had statistically significant predictive power for detection of excessive fetal growth. © 2008 AACE.
Resumo:
Background: Ninety percent of cases of diabetes are of the slowly evolving non-insulin-dependent type, or Type 2 diabetes. Lack of exercise is regarded as one of the main causes of this disorder. In this study we analyzed the effects of physical exercise on glucose homeostasis in adult rats with type 2 diabetes induced by a neonatal injection of alloxan. Methods: Female Wistar rats aged 6 days were injected with either 250 mg/ kg of body weight of alloxan or citrate buffer 0.01 M (controls). After weaning, half of the animals in each group were subjected to physical training adjusted to meet the aerobic-anaerobic metabolic transition by swimming 1 h/day for 5 days a week with weight overloads. The necessary overload used was set and periodically readjusted for each rat through effort tests based on the maximal lactate steady state procedure. When aged 28, 60, 90, and 120 days, the rats underwent glucose tolerance tests (GTT) and their peripheral insulin sensitivity was evaluated using the HOMA index. Results: The area under the serum glucose curve obtained through GTT was always higher in alloxan-treated animals than in controls. A decrease in this area was observed in trained alloxan-treated rats at 90 and 120 days old compared with non-trained animals. At 90 days old the trained controls showed lower HOMA indices than the non-trained controls. Conclusion: Neonatal administration of alloxan induced a persistent glucose intolerance in all injected rats, which was successfully counteracted by physical training in the aerobic/anaerobic metabolic transition. © 2008 Mota et al; licensee BioMed Central Ltd.
Resumo:
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca2 2+ signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca2 2+signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally,weexplored the status of Ca2 2+-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase Cα as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the β-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. Copyright © 2010 by The Endocrine Society.
Resumo:
Rabbits were experimentally infected with sporulated Eimeria stiedai oocysts. A total of 50 white adult rabbits, New Zealand race, were distributed into two groups: Group A was infected with 1x10 4 sporulated Eimeria stiedai oocysts, while group B was inoculated with distilled water as a control. The animals generally displayed increased levels of total protein, globulin, total cholesterol, LDL-c and triacylglycerols; however, total levels of liver lipids and HDL-c decreased, and plasma glucose levels varied during the experimental period. In sum, Eimeria stiedai infection of rabbits caused a considerable number of changes in the metabolism of lipids, proteins and glucose, which is likely due to direct effects of liver cirrhosis on normal body function.
Resumo:
This paper describes the use of Au nanoparticle (NP)-containing hydrogel microstructures in the development of electrochemical enzyme-based biosensors. To fabricate biosensors, AuNPs were conjugated with glucose oxidase (GOX) or horseradish peroxidase (HRP) molecules and were dispersed in the prepolymer solution of poly(ethylene glycol) diacrylate (PEG-DA). Vinylferrocene (VF) was also added into the prepolymer solution in order to lower operating potential of the biosensor and to prevent oxidation of interfering substances. The prepolymer solution was photolithographically patterned in alignment with an array of Au electrodes fabricated on glass. As a result, electrode arrays became functionalized with AuNP/GOX- or AuNP/HRP-carrying hydrogel microstructures. Performance of the biosensors was characterized by impedance spectroscopy, chronoapmerometry and cyclic voltammetry. Impedance measurements revealed that inclusion of Au nanoparticles improved conductivity of PEG hydrogel by a factor of 5. Importantly, biosensors based on AuNP-GOX complex exhibited high sensitivity to glucose (100μAmM -1cm -2) in the linear range from 0.1 to 10mM. The detection limit was estimated to be 3.7×10- 7M at a signal-to-noise ratio of 3. Biosensors with immobilized AuNP/HPR had a linear response from 0.5 to 5.0μM of hydrogen peroxide with sensitivity of 1.4mAmM -1cm -2. The method for fabricating nanoparticle-carrying hydrogel microstructures described in this paper should be widely applicable in the development of robust and sensitive electrochemical biosensors. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Physical activity is considered an extremely effective therapy in cases of type 1 diabetes (DM-1), as it promotes glucose uptake independent of insulin action. However, there are few studies on the effect of a single session of exercise on glucose uptake in DM-1 (i.e., in the absence of insulin). Therefore, the purpose of this study was to assess the effect of a single exercise session on glucose homeostasis in DM-1 rats. For this purpose, 30 male rats were divided into three groups: sedentary control (SC), sedentary diabetic (SD), and exercise diabetic (ED). DM was induced by administration of alloxan and identified by the value of fasting glucose. The physical activity consisted of a single swimming session at the anaerobic threshold intensity for diabetic rats (3.5% body weight overload) for 30 min. The oral glucose tolerance test (OGTT) was performed immediately after the physical activity. The animals were sacrificed 48 hr after the OGTT, and samples were taken from the blood, liver, gastrocnemius, and mesenteric and subcutaneous adipose tissue. We observed that DM caused significant reduction in body weight. A single session of physical activity did not modify the response to the OGTT or glucose. However, it resulted in increased HDL cholesterol and hepatic glycogen content. These results suggest that, despite not having an effect on glucose homeostasis, acute physical activity performed at anaerobic threshold intensity leads to beneficial changes in the context of type 1 diabetes.
Resumo:
This study aimed to compare the glycemic values obtained with a glucometer with those determined by a colorimetric enzymatic assay in venous blood as well as to evaluate the possibility of using capillary blood samples of dogs with diabetes mellitus. A group with 30 diabetic dogs was formed and from each dog three blood samples were obtained for glycemic evaluations by different methods and blood collection sites. The mean glycemic values showed no significant difference between the different sites of blood collection and methods (P=0.90). Venous, pinna and carpal pad blood glucose showed excellent correlation with the colorimetric enzymatic assay (r=0.98; r=0.95 and r=0.96 respectively) and the obtained values fit properly the clinically acceptable intervals in the error grid analysis. The present study revealed that carpal pad, venous and pinna glucose measurements are clinically acceptable and this method is feasible for use in hospitalized diabetic dogs. The sample attainment of carpal pad proved to be effective and a viable alternative. Further work is necessary to assess the utility of this technique in a home environment.
Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis
Resumo:
Tannases have attracted wider attention because of their biotechnological potential, especially enzymes from filamentous fungi and other microorganisms. However, the biodiversity of these microorganisms has been poorly explored, and few strains were identified for tannase production and characterization. This article describes the production, purification and characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. High enzymatic levels were obtained in Khanna medium containing tannic acid up to 72 h at 30 °C under 100 rpm. The purified enzyme with 65% of carbohydrate content had an apparent native molecular mass of 218 kDa with subunits of 120 kDa and 93 kDa and was stable at 50 °C for 1 h. Optima of temperature and pH were 60 °C and 5.0-6.5, respectively. The enzyme was not affected significantly by most ions, detergents and organic solvents. While glucose did not affect the tannase activity, the addition of a high concentration of gallic acid did. The Km values were 1.7 mM (tannic acid), 14.3 mM (methyl-gallate) and 0.6 mM (propyl-gallate). The enzyme was able to catalyze the transesterification reaction to produce propyl-gallate. All biochemical properties suggest the biotechnological potential of the glucose- and solvent-tolerant tannase from A. phoenicis. © 2012 Elsevier B.V. All rights reserved.
Resumo:
C-reactive protein (CRP) is an acute phase protein whose levels are increased in many disorders. There exists, in particular, a great deal of interest in the correlation between blood serum levels and the severity of risk for cardiovascular disease. A sensitive, label-free, non-amplified and reusable electrochemical impedimetric biosensor for the detection of CRP in blood serum was developed herein based on controlled and coverage optimised antibody immobilization on standard polycrystalline gold electrodes. Charge transfer resistance changes were highly target specific, linear with log. CRP. concentration across a 0.5-50. nM range and associated with a limit of detection of 176. pM. Significantly, the detection limits are better than those of current CRP clinical methods and the assays are potentially cheap, relatively automated, reusable, multiplexed and highly portable. The generated interfaces were capable not only of comfortably quantifying CRP across a clinically relevant range of concentrations but also of doing this in whole blood serum with interfaces that were, subsequently, reusable. The importance of optimising receptor layer resistance in maximising assay sensitivity is also detailed. © 2012.
Resumo:
Background: Dogs are commonly affected by hyperglycemic conditions. Hyperglycemia compromises the immune response and favors bacterial infections; however, reports on the effects of glucose on neutrophil oxidative metabolism and apoptosis are conflicting in humans and rare in dogs. Considering the many complex factors that affect neutrophil oxidative metabolism in vivo, we investigated in vitro the specific effect of high concentrations of glucose on superoxide production and apoptosis rate in neutrophils from healthy dogs.Results: The capacity of the neutrophils to reduce tetrazolium nitroblue decreased significantly in the higher concentration of glucose (15.13 ± 9.73% (8 mmol/L) versus 8.93 ± 5.71% (16 mmol/L)). However, there were no changes in tetrazolium nitroblue reduction at different glucose concentrations when the neutrophils were first activated with phorbol myristate acetate. High concentrations of glucose did not affect the viability and apoptosis rate of canine neutrophils either with or without prior camptothecin stimulation. This study provides the first evidence that high concentrations of glucose inhibit the oxidative metabolism of canine neutrophils in vitro in a manner similar to that which occurs in humans, and that the decrease in superoxide production did not increase the apoptosis rate.Conclusions: A high concentration of glucose reduces the oxidative metabolism of canine neutrophils in vitro. It is likely that glucose at high concentrations rapidly affects membrane receptors responsible for the activation of NADPH oxidase in neutrophils; therefore, the nonspecific immune response can be compromised in dogs with acute and chronic hyperglycemic conditions. © 2013 Bosco et al.; licensee BioMed Central Ltd.
Resumo:
A disposable pencil graphite electrode modified with dsDNA was used in combination with square wave voltammetry in order to evaluate the interaction of DNA with the textile dyes Disperse Orange 1 (DO1) and Disperse Red 1 (DR1), and with the products of their electrolysis. Significant changes in the characteristic oxidation peaks of the guanine and adenine moieties of immobilized dsDNA were observed after incubation of the modified electrode for 180 s in solutions of the dyes in their original forms. The same was observed using the electrolysis products obtained by oxidation and reduction conversions. The oxidation peak currents of the guanine and adenine moieties decreased when the concentrations of DO1 and DR1 were increased up to 5.0 × 10 -6 and 1.0 × 10-6 mol L-1, respectively; the signal decreases were more pronounced after interaction with the oxidized dyes, compared to the reduced compounds. The interactions between DNA and DO1, DR1, and the electrolyzed dyes were further investigated by UV-vis spectrophotometry in solution, and different effects such as hypochromism and hyperchromism were observed in the resulting DNA spectra. The investigated interactions showed clear evidence of changes in the DNA structure, and suggested a predominant intercalation mode leading to damage in the biomolecule. © 2013 Elsevier B.V.