903 resultados para GLANCING ANGLE DEPOSITION
Resumo:
The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.
Resumo:
Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.
Resumo:
Silicon has long been considered as one of the most promising anode material for lithium-ion batteries. However, the poor cycle life due to stress during charge/discharge cycling has been a major concern for its practical applications. In this report, novel Si-metal nanocomposites have been explored to accommodate the stress generated in the intercalation process. Several approaches have been studied with the aim of getting uniform mixing, good mechanical stability and high Si content. Among the three approaches being investigated, Si- Galinstan nanocomposite based on electrophoretic deposition showed the best promise by achieving at least 32.3% Si theoretical weight percentage, and our in current experiments we’ve already get 13% Silicon weight percentage, which gave us an anode material 46% more capacity than the current commercial product.
Resumo:
During the past decades, tremendous research interests have been attracted to investigate nanoparticles due to their promising catalytic, magnetic, and optical properties. In this thesis, two novel methods of nanoparticle fabrication were introduced and the basic formation mechanisms were studied. Metal nanoparticles and polyurethane nanoparticles were separately fabricated by a short-distance sputter deposition technique and a reactive ion etching process. First, a sputter deposition method with a very short target-substrate distance is found to be able to generate metal nanoparticles on the glass substrate inside a RIE chamber. The distribution and morphology of nanoparticles are affected by the distance, the ion concentration and the process time. Densely-distributed nanoparticles of various compositions are deposited on the substrate surface when the target-substrate distance is smaller than 130mm. It is much less than the atoms’ mean free path, which is the threshold in previous research for nanoparticles’ formation. Island structures are formed when the distance is increased to 510mm, indicating the tendency to form continuous thin film. The trend is different from previously-reported sputtering method for nanoparticle fabrication, where longer distance between the target and the substrate facilitates the formation of nanoparticle. A mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results. Secondly, in polyurethane nanoparticles’ fabrication, a mechanism is put forward based on the microphase separation phenomenon in block copolymer thin film. The synthesized polymers have formed dispersed and continuous phases because of the different properties between segments. With harder mechanical property, the dispersed phase is remained after RIE process while the continuous phase is etched away, leading to the formation of nanoparticles on the substrate. The nanoparticles distribution is found to be affected by the heating effect, the process time and the plasma power. Superhydrophilic property is found on samples with these two types of nanoparticles. The relationship between the nanostructure and the hydrophilicity is studied for further potential applications.
Resumo:
The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.
Resumo:
Epidemiologic studies have shown correlations between morbidity and particles < or = 2.5 microm generated from pollution processes and manufactured nanoparticles. Thereby nanoparticles seem to play a specific role. The interaction of particles with the lung, the main pathway of undesired particle uptake, is poorly understood. In most studies investigating these interactions in vitro, particle deposition differs greatly from the in vivo situation, causing controversial results. We present a nanoparticle deposition chamber to expose lung cells mimicking closely the particle deposition conditions in the lung. In this new deposition chamber, particles are deposited very efficiently, reproducibly, and uniformly onto the cell culture, a key aspect if cell responses are quantified in respect to the deposited particle number. In situ analyses of the lung cells, e.g., the ciliary beat frequency, indicative of the defense capability of the cells, are complemented by off-line biochemical, physiological, and morphological cell analyses.
Resumo:
This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.
Resumo:
PURPOSE: To compare the effect of intravitreal and orbital floor triamcinolone acetonide (TA) on macular edema, visual outcome, and course of postoperative inflammation after cataract surgery in uveitis patients. DESIGN: Prospective, randomized clinical trial. METHODS: Monocenter study (40 patients) with chronic endogenous uveitis who underwent phacoemulsification with intraocular lens implantation with either 4 mg intravitreal TA (n = 20) or 40 mg orbital floor TA (n = 20). The primary outcome was influence on cystoid macular edema (CME). Secondary outcome measures were best-corrected visual acuity (BCVA), anterior chamber cell grade, laser flare photometry, giant cell deposition, posterior capsule opacification (PCO), and intraocular pressure. RESULTS: Mean central foveal thickness decreased in the intravitreal TA group and increased in the orbital floor TA group (P < .001 at one and three months). CME improved in 50% of patients after intravitreal TA, whereas it was unchanged after orbital floor TA (difference between the groups at three months, P = .049). Mean BCVA (logarithm of the minimal angle of resolution) improved postoperatively (P < .001) from 0.76 and 0.74 to 0.22 and 0.23 in the intravitreal TA and orbital floor TA group, respectively. Anterior chamber cell count at one month was lower in the intravitreal TA than in the orbital floor TA group (P = .02). Laser flare photometry values and giant cell numbers were slightly higher after orbital floor TA than after intravitreal TA. The groups did not differ with respect to PCO rate and ocular hypertension. CONCLUSIONS: The CME improvement and anti-inflammatory effect after intravitreal TA was better than after orbital floor TA injection in cataract surgery in uveitis patients.
Resumo:
The purpose or this investigation is primarily to determine the best conditions for plating chromium on aluminum. The work was carried out with the hope of obtaining coherent deposits, and of determining the conditions under which such deposits may be duplicated.
Resumo:
In the deposition of metallic zinc by electrolysis from neutral or acid solution, little difficulty is experienced provided certain impurities are absent from the electrolyte. The use of the process has long been considered as a potential source, patents on the process having been issued as early as 1880. However, the early experimenters failed to realize the importance of impurities in the electrolyte, and for this reason, the process suffered several severe setbacks when commercial plants were built.
Resumo:
Throughout the entire experiment the electrolysis were conducted in an eight-hundred cubic centimeter beaker. An excellent circulation of the solution was assured by means of an electric stirrer, vigorous gas evolution from the anodes, and by means of a regulated feed-discharge system. By means of this balance, solution of the same impurity concentration as that of the electrolyte was fed in the cell just as fast as the discharge was syphoned out.
Resumo:
The formation of monomolecular films is possible because of the action of the heteropolar molecules of certain fatty acids, especially stearic. Under the proper conditions the acid will spread out until a monomolecular film is formed.
Resumo:
In the past few years a great deal of attention has been given to the electrodeposition of alloys. For the main part, this investigation has been of scientific interest only; but in a few instances, such work has attained commercial importance.