923 resultados para GENERALIZED ENTROPIES
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
A scenario-based two-stage stochastic programming model for gas production network planning under uncertainty is usually a large-scale nonconvex mixed-integer nonlinear programme (MINLP), which can be efficiently solved to global optimality with nonconvex generalized Benders decomposition (NGBD). This paper is concerned with the parallelization of NGBD to exploit multiple available computing resources. Three parallelization strategies are proposed, namely, naive scenario parallelization, adaptive scenario parallelization, and adaptive scenario and bounding parallelization. Case study of two industrial natural gas production network planning problems shows that, while the NGBD without parallelization is already faster than a state-of-the-art global optimization solver by an order of magnitude, the parallelization can improve the efficiency by several times on computers with multicore processors. The adaptive scenario and bounding parallelization achieves the best overall performance among the three proposed parallelization strategies.
Resumo:
In this thesis, novel analog-to-digital and digital-to-analog generalized time-interleaved variable bandpass sigma-delta modulators are designed, analysed, evaluated and implemented that are suitable for high performance data conversion for a broad-spectrum of applications. These generalized time-interleaved variable bandpass sigma-delta modulators can perform noise-shaping for any centre frequency from DC to Nyquist. The proposed topologies are well-suited for Butterworth, Chebyshev, inverse-Chebyshev and elliptical filters, where designers have the flexibility of specifying the centre frequency, bandwidth as well as the passband and stopband attenuation parameters. The application of the time-interleaving approach, in combination with these bandpass loop-filters, not only overcomes the limitations that are associated with conventional and mid-band resonator-based bandpass sigma-delta modulators, but also offers an elegant means to increase the conversion bandwidth, thereby relaxing the need to use faster or higher-order sigma-delta modulators. A step-by-step design technique has been developed for the design of time-interleaved variable bandpass sigma-delta modulators. Using this technique, an assortment of lower- and higher-order single- and multi-path generalized A/D variable bandpass sigma-delta modulators were designed, evaluated and compared in terms of their signal-to-noise ratios, hardware complexity, stability, tonality and sensitivity for ideal and non-ideal topologies. Extensive behavioural-level simulations verified that one of the proposed topologies not only used fewer coefficients but also exhibited greater robustness to non-idealties. Furthermore, second-, fourth- and sixth-order single- and multi-path digital variable bandpass digital sigma-delta modulators are designed using this technique. The mathematical modelling and evaluation of tones caused by the finite wordlengths of these digital multi-path sigmadelta modulators, when excited by sinusoidal input signals, are also derived from first principles and verified using simulation and experimental results. The fourth-order digital variable-band sigma-delta modulator topologies are implemented in VHDL and synthesized on Xilinx® SpartanTM-3 Development Kit using fixed-point arithmetic. Circuit outputs were taken via RS232 connection provided on the FPGA board and evaluated using MATLAB routines developed by the author. These routines included the decimation process as well. The experiments undertaken by the author further validated the design methodology presented in the work. In addition, a novel tunable and reconfigurable second-order variable bandpass sigma-delta modulator has been designed and evaluated at the behavioural-level. This topology offers a flexible set of choices for designers and can operate either in single- or dual-mode enabling multi-band implementations on a single digital variable bandpass sigma-delta modulator. This work is also supported by a novel user-friendly design and evaluation tool that has been developed in MATLAB/Simulink that can speed-up the design, evaluation and comparison of analog and digital single-stage and time-interleaved variable bandpass sigma-delta modulators. This tool enables the user to specify the conversion type, topology, loop-filter type, path number and oversampling ratio.
Resumo:
In this paper, we investigate the secrecy outage performance of spectrum sharing multiple-input multiple-output networks using generalized transmit antenna selection with maximal ratio combining over Nakagami-m channels. In particular, the outdated channel state information is considered at the process of antenna selection due to feedback delay. Considering a practical passive eavesdropper scenario, we derive the exact and asymptotic closed-form expressions of secrecy outage probability, which enable us to evaluate the secrecy performance with high efficiency and present a new design insight into the impact of key parameters on the secrecy performance. In addition, the analytical results demonstrate that the achievable secrecy diversity order is only determined by the parameters of the secondary network, while other parameters related to primary or eavesdropper’s channels have a significantly impact on the secrecy coding gain.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
Background. Despite systematic vaccination of the population, tetanus continues to be a health problem in Albania, as in some other developing countries. In this study, our intent was to evaluate prognostic factors relating to death in adult patients with generalized tetanus. Methodology and patients. All the patients (60) included in the study were hospitalized at the regional hospitals of Shkodra and Korça, and the University Hospital Centre “Mother Theresa” of Tirana, Albania, during the period of 1984-2004. They had a mean age of 49.1+14.4 years, 43 (71.7%) were males and 40 (66.6%) of them lived in rural areas. The mean incubation period was 12 days and the case-fatality rate (CFR) was 38.3%. Results. The CFR in patients with an onset period ≥2 days was 21.7% and in those with <2 days was 48.6%, OR=0.29 (p<0.05). Patients >50 years old had a CFR=60.87% (OR=7, p<0.05). We found the high CFR to be significantly associated with urban residency, male gender, complicated wound, head localization, fever ≥ 38.4 °C, tachycardia > 120 beats/min, and hypertension. Discussion. The main prognostic factor of those analyzed in our study appeared to be the onset period and the age of the patients. We didn’t find significant differences in CFR in patients with different incubation periods. Clinicians must take into account that wound complication and localization, tachycardia and hypertension, high fever, male gender and urban residency significantly influence the prognoses of adults with generalized tetanus.
Resumo:
La dinámica demográfica ha sido modelada con ecuaciones diferenciales desde que Malthus comenzó sus estudios hace más de doscientos años atrás. Los modelos convencionales siempre tratan relaciones entre especies como estáticas, denotando sólo su dependencia durante un período fijo del tiempo, aunque sea conocido que las relaciones entre especies pueden cambiar con el tiempo. Aquí proponemos un modelo para la dinámica demográfica que incorpora la evolución con el tiempo de las interacciones entre especies. Este modelo incluye una amplia gama de interacciones, de depredador-presa a las relaciones mutualistas, ya sea obligada o facultativa. El mecanismo que describimos permite la transición de una clase de relación entre especies a algún otro, según algunos parámetros externos fijados por el contexto. Estas transiciones podrían evitar la extinción de una de las especies, si esto termina por depender demasiado del ambiente o su relación con las otras especies.
Resumo:
We present a generalization of the complete intersection in products of projective space (CICY) construction of Calabi–Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics literature. Their utility stems from the fact that they can be simply described in terms of a ‘configuration matrix’, a matrix of integers from which many of the details of the geometries can be easily extracted. The generalization we present is to allow negative integers in the configuration matrices which were previously taken to have positive semi-definite entries. This broadening of the complete intersection construction leads to a larger class of Calabi–Yau manifolds than that considered in previous work, which nevertheless enjoys much of the same degree of calculational control. These new Calabi–Yau manifolds are complete intersections in (not necessarily Fano) ambient spaces with an effective anticanonical class. We find examples with topology distinct from any that has appeared in the literature to date. The new manifolds thus obtained have many interesting features. For example, they can have smaller Hodge numbers than ordinary CICYs and lead to many examples with elliptic and K3-fibration structures relevant to F-theory and string dualities.
Resumo:
The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.
Resumo:
We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their projected entangled pair state representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.
Resumo:
BACKGROUND: Regional differences in physician supply can be found in many health care systems, regardless of their organizational and financial structure. A theoretical model is developed for the physicians' decision on office allocation, covering demand-side factors and a consumption time function. METHODS: To test the propositions following the theoretical model, generalized linear models were estimated to explain differences in 412 German districts. Various factors found in the literature were included to control for physicians' regional preferences. RESULTS: Evidence in favor of the first three propositions of the theoretical model could be found. Specialists show a stronger association to higher populated districts than GPs. Although indicators for regional preferences are significantly correlated with physician density, their coefficients are not as high as population density. CONCLUSIONS: If regional disparities should be addressed by political actions, the focus should be to counteract those parameters representing physicians' preferences in over- and undersupplied regions.
Resumo:
Using tools of the theory of orthogonal polynomials we obtain the generating function of the generalized Fibonacci sequence established by Petronilho for a sequence of real or complex numbers {Qn} defined by Q0 = 0, Q1 = 1, Qm = ajQm−1 + bjQm−2, m ≡ j (mod k), where k ≥ 3 is a fixed integer, and a0, a1, . . . , ak−1, b0, b1, . . . , bk−1 are 2k given real or complex numbers, with bj #0 for 0 ≤ j ≤ k−1. For this sequence some convergence proprieties are obtained.