997 resultados para GENERA
Resumo:
The tick Amblyomma parkeri Fonseca and Arago was described in 1952, based on female and immature ticks collected in the states of So Paulo and Santa Catarina, Brazil. Thereafter, there has been no further report of A. parkeri, and the male has remained unknown. Herein, we examined ticks collected on porcupines from a locality in the state of So Paulo. Some of the ticks were identified as Amblyomma longirostre (Koch, 1844), whereas others as A. parkeri, including male specimens, for which we provide the first description. We also provide additional reports of A. parkeri after examining collections of A. longirostre and Amblyomma geayi Neumann, 1899 from different tick collections. Morphological evidence to support the original description of A. parkeri is presented, supported by molecular analyses of portions of the 16S rRNA and 12S rRNA mitochondrial genes. Morphological particularities to separate A. parkeri, A. longirostre, and A. geayi are provided.
Resumo:
Most lungfish tooth plates, that are arranged in radiating ridges derived from the fusion of separate cusps in young juveniles, are based on a framework of enamel, mantle dentine and bone that encloses a mass of specialized dentines forming the occlusal surface. In most taxa, the specialized dentines are interdenteonal and circumdenteonal dentine, but a few derived genera have petrodentine as well. Petrodentine, as originally defined, describes a specific form of hypermineralized dentine in adult tooth plates of the Recent African lungfish Protopterus. The ontogeny of fossil and Recent lungfish tooth plates demonstrates that petrodentine is derived by continuous enhancement of the hard tissue of the primary core of the initially isolated cusps of the tooth plate, and that interdenteonal dentine with denteons of circumdenteonal dentine is a secondary development in the tooth plate around and below the first formed cusps of the ridges. In dipnoans that lack petrodentine in adults the primary core of the cusps is not enhanced, but is removed by wear. The hard tissues of the dipnoan tooth plate provide useful characters for defining dipnoan taxa, as do the differing arrangements of the tissues in each species. Details of the arrangement of the enclosed specialized dentines are surprisingly variable among genera, and are significant for the structure and function of the tooth plate. Little regularity of structure is discernible in the histology of tooth plates of early dipnoans, but derived genera have more predictable structure. Consistent with other uniquely dipnoan characters, like the composition of the dermal skull, an evolutionary progression is evident within the group in the fine structure of the dentition, and, as with the bones of the dermal skull, little similarity is demonstrable between the dentines of dipnoans and tetrapods.
Resumo:
The organisation of cells of the planctomycete species Pirellula marina, Isosphaera pallida, Gemmata obscuriglobus, Planctomyces mat-is and Candidatus Brocadia anammoxidans was investigated based on ultrastructure derived from thin-sections of cryosubstituted cells, freeze-fracture replicas, and in the case of Gemmata obscuriglobus and Pirellllla marina, computer-aided 3-D reconstructions from serial sections of cryosubstituted cells. All planctomycete cells display a peripheral ribosome-free region, termed here the paryphoplasm, surrounding the perimeter of the cell, and an interior region including any nucleoid regions as well as ribosome-like particles, bounded by a single intracytoplasmic membrane (ICM), and termed the pirellulosome in Pirellula species. Immunogold labelling and RNase-gold cytochemistry indicates that in planctomycetes all the cell DNA is contained wholly within the interior region bounded by the ICM, and the paryphoplasm contains no DNA but at least some of the cell's RNA. The ICM in Isosphaera pallida and Planctomyces mat-is is invaginated such that the paryphoplasm forms a major portion of the cell interior in sections, but in other planctomycetes it remains as a peripheral zone. In the anaerobic ammonium-oxidising (anammox process) chemoautotroph Candidatus Brocadia anammoxidans the interior region bounded by ICM contains a further internal single-membrane-bounded region, the anam-moxosome. In Gemmata obscuriglobus. the interior ICM-bounded region contains the nuclear body, a double-membrane-bounded region containing the cell's nucleoid and all genomic DNA in addition to some RNA. Shared features of cell compartmentalisation in different planctomycetes are consistent with the monophyletic nature of the planctomycetes as a distinct division of the Bacteria. The shared organisational plan for the planctomycete cell constitutes a new type not known in cells of other bacteria.
Resumo:
Pretestis laticaecum is described from the small intestine of the freshwater turtle Emydura krefftil. The new species can be distinguished from its congener P. australianus by the following characters; significantly smaller ovary, main lymph vessels reach anterior to posterior testis, genital atrium in mid-oesophageal region, small vitelline follicles clumped around the ovary and significantly larger caeca overlapping. The, position of this species and related genera in fish, the life cycle of P. australianus and the presence of P. laticaecum in turtles suggest that it is a relatively recent host capture.
Resumo:
Ten years ago, an anaerobic ammonium oxidation ('anammox') process was discovered in a denitrifying pilot plant reactor. From this system, a highly enriched microbial community was obtained, dominated by a single deep-branching planctomycete, Candidatus Brocadia anammoxidans. Phylogenetic inventories of different wastewater treatment plants with anammox activity have suggested that at least two genera in Planctomycetales can catalyse the anammox process. Electron microscopy of the ultrastructure of B. anammoxidans has shown that several membrane-bounded compartments are present inside the cytoplasm. Hydroxylamine oxidoreductase, a key anammox enzyme, is found exclusively inside one of these compartments, tentatively named the 'anammoxosome'.
Resumo:
In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in rum this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis, and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the Oligochaete. Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan. Tetracapsula bryosalmonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that: 1) the Myxozoa are closely related to Cnidaria (also supported by morphological data), 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan. rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist), and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis. Ceratomyxa shasta. Kudoa spp,, and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans. which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.
Resumo:
The upper Paleozoic miospore genus Spelaeotriletes Neves and Owens, 1966 is reviewed as a morpho-taxonomic entity and vis-a-vis other similarly constructed (pseudosaccate) genera - Geminospora Balme, 1962, Grandispora Hoffmeister, Staplin, and Malloy, 1955, Rhabdosporites Richardson, 1960, and Retispora Staplin, 1960. Detailed studies of numerous, mainly topotype specimens of Spelaeotriletes ybertii (Marques-Toigo, 1970) Playford and Powis, 1979 from the Lower Permian of Uruguay result in its re-diagnosis, in conjunction with a survey of its exclusively Gondwanan occurrences, particularly in South American strata extending from the Upper Carboniferous (Westphalian) into the Lower Permian, and also in Australian strata of approximately equivalent age. The characteristics of other species of Spelaeotriletes reported from upper Paleozoic deposits of Gondwana are discussed, as are their temporal representations in various broad regions of the supercontinent (South America, North Africa, Australia). These species include two, perhaps three, that, like Spelaeotriletes triangulus/arenaceus, are known also from Euramerica - S. balteatus (Playford, 1963) Higgs, 1996, S. pretiosus (Playford, 1964) Utting, 1987, and possibly S. owensii Loboziak and Alpern, 1978. Other species, such as S. benghaziensis Loboziak and Clayton, 1988, S. giganteus Loboziak and Clayton, 1988, and S. vibrissus Playford and Satterthwait, 1988, have, on present knowledge, exclusively Gondwanan occurrences. S. queenslandensis Jones and Truswell. 1992, known only from Upper Carboniferous strata of northeastern Australia, is formally reassigned on sculptural grounds to Grandispora. Not unexpectedly in a paleogeographic perspective, North Africa and South America are more closely allied with each other than with Australia in terms of shared species of Spelaeotriletes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Benedenia Diesing, 1858, a genus of capsalid (benedeniine) monogeneans, is redefined. The generic diagnosis is amended to include: the path of tendons in the haptor from extrinsic muscles in the body; presence and form of the marginal valve; a penis occupying a penis canal with weakly muscular wall; a weakly muscular accessory gland reservoir proximal to the penis and enclosed by a proximal extension of the wall of the penis canal; male and female genital apertures usually common, rarely separate; vagina with pore usually close to the common genital pore but may open in mid body between the germarium and the common genital pore, or anterior to the common genital pore. A conservative approach is adopted and the generic diagnosis is clarified and broadened to accommodate species that display some variation in reproductive anatomy, especially of the female system. We argue against potential alternative actions such as defining Benedenia strictly to contain species with separate male and female genital apertures and against recognition of a separate genus, Tareenia Hussey, 1986, for species with a vaginal pore anterior to the common genital pore. Under our conception, Benedenia comprises 21 species: B. sciaenae (van Beneden, 1856) Odhner, 1905 (type species); B. acanthopagri (Hussey, 1986) comb. nov.; B. anticavaginata Byrnes, 1986; B. bodiani Yamaguti, 1968; B. elongata (Yamaguti, 1968) Egorova, 1997; B. epinepheli (Yamaguti, 1937) Meserve, 1938; B. hawaiiensis Yamaguti, 1968; B. hendorffi(von Linstow, 1889) Odhner, 1905; B. hoshinai Ogawa, 1984; B. innobilitata Burhnheim Gomes and Varela, 1973: B. jaliscana Bravo-Hollis, 1952; B. lolo Yamaguti, 1968; B. lutjani Whittington and Kearn, 1993: B. monticellii (Parona and Perugia, 1895) Johnston, 1929; B. ovata (Goto, 1894) Johnston. 1929: B. pompatica Burhnheim, Gomes and Varela, 1973; B. rohdei Whittington, Kearn and Beverley-Burton, 1994; B. scari Yamaguti, 1968; B. sekii (Yamaguti, 1937) Meserve, 1938; B, seriolae (Yamaguti, 1934) Meserve, 1938; and B. synagris Yamaguti, 1953. The type species, B. sciaenae, is redescribed based on new material from Australia. No types for this taxon were designated and we have assigned a series of voucher specimens. Tareenia acanthopagri Hussey, 1986 becomes B. acanthopagri (Hussey, 1986) comb. nov. and T. anticavaginata (Byrnes, 1986) Egorova, 1997 and T. lutjani (Whittington and Kearn, 1993) Egorova, 1997 are returned to Benedenia as B. anticavaginata and B. lutjani Benedenia akaisaki Iwata, 1990 is considered a synonym of B. ovata and B. kintoki Iwata, 1990 is considered a synonym of B. elongata. Two species, B, madai Ishii and Sawada, 1938 and B. pagrosomi Ishii and Sawada, 1938, are considered species inquirendae. Based on the redefinition of Benedenia, the diagnosis for the Benedeniinae is amended. Tareenia is synonymized with Benedenia but Menziesia Gibson, 1976 is recognized and its generic diagnosis amended to include: anterior attachment organs tending to form a 'hooded' appearance; prominent anterior gland cells between the pharynx and the anterior margin of the body: long penis, tapering proximally, occupying a penis canal with weakly muscular wall: penis canal and penis describe a sigmoid; accessory gland reservoir dorsal and alongside, or posterior and lateral to, proximal end of the penis and enclosed by a proximal extension of the wall of the penis canal. Under this conception. Menziesia comprises: M. noblei (Menzies. 1946) Gibson, 1976 (type species); M. malaboni (Velasquez. 1982) comb. nov.: M. merinthe (Yamaguti, 1968) Gibson. 1976: M. ovalis (Yamaguti, 1968) Gibson, 1976: and M. sebastodis (Yamaguti, 1934) comb, nov. A key to valid species of Benedenia and Menziesia is provided and a list is presented of published records of undescribed or unattributed species of Benedenia. Some protocols are suggested for preparation of benedeniine material to enhance future taxonomic studies and comparisons. The host-specificity and geographic distribution of species in these revised genera are discussed. The composition of the Capsalidae is discussed and some difficulties in defining and distinguishing between its different subfamilies are considered.
Resumo:
The current classification of the Monocotylidae (Monogenea) is based on a phylogeny generated from morphological characters. The present study tests the morphological phylogenetic hypothesis using molecular methods. Sequences from domains C2 and D1 and the partial domains C1 and D2 from the 28S rDNA gene for 26 species of monocotylids from six of the seven subfamilies were used. Trees were generated using maximum parsimony, neighbour joining and maximum likelihood algorithms. The maximum parsimony tree, with branches showing less than 70% bootstrap support collapsed, had a topology identical to that obtained using the maximum likelihood analysis. The neighbour joining tree, with branches showing less than 70% support collapsed. differed only in its placement of Heterocotyle capricornensis as the sister group to the Decacotylinae clade. The molecular tree largely supports the subfamilies established using morphological characters. Differences are primarily how the subfamilies are related to each other. The monophyly of the Calicotylinae and Merizocotylinae and their sister group relationship is supported by high bootstrap values in all three methods, but relationships within the Merizocotylinae are unclear. Merizocotyle is paraphyletic and our data suggest that Mycteronastes and Thaumatocotyle, which were synonymized with Merizocotyle after the morphological cladistic analysis, should perhaps be resurrected as valid genera. The monophyly of the Monocotylinae and Decacotylinae is also supported by high bootstrap values. The Decacotylinae, which was considered previously to be the sister group to the Calicotylinae plus Merizocotylinae, is grouped in an unresolved polychotomy with the Monocotylinae and members of the Heterocotylinae. According to our molecular data, the Heterocotylinae is paraphyletic. Molecular data support a sister group relationship between Troglocephalus rhinobatidis and Neoheterocotyle rhinobatidis to the exclusion of the other species of Neoheterocotyle and recognition of Troglocephalus renders Neoheterocotyle,le paraphyletic. We propose Troglocephalus incertae sedis. An updated classification and full species list of the Monocotylidae is provided. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Euzetia occultum n. g., n. sp. (Monogenea: Monocotylidae) is described from the gills of the Australian cownose ray Rhinoptera neglecta Ogilby collected in Moreton Bay, Queensland, Australia. Euzetia has one central and ten peripheral loculi, which is similar to species in Decacotyle Young, 1967. However Euzetia is distinguished from other genera in the family by the presence of an additional loculus on either side of the central loculus. Because Euzetia does not fit into any of the six existing subfamilies in the Monocotylidae Taschenberg, 1879, as currently recognised, we propose the Euzetiinae n. subf. to accommodate the new genus. Euzetia occultum is described and illustrated fully. This is the first published record of a monocotylid from a species of Rhinoptera Cuvier.
Resumo:
The status and composition of the Diplosentidae Tubangui et Masilungan, 1937 are reviewed. The type species of the type genus, Diplosentis amphacanthi Tubangui et Masilungan, 1937 from Siganus canaliculatus (Park, 1797) in the Philippines, is concluded to have been described inaccurately,in supposedly possessing, only two cement glands and lemnisci enclosed in a membranous sac. The species is almost certainly very close to species of Neorhadinorhynchus yamaguti, 1939 and Sclerocollum Schmidt of Paperna, 1978 which have also been reported from siganids from the tropical Indo-Pacific. Species of these genera have four cement glands and unexceptional lemnisci. As a result, Diplosentis Tubangui et Masilungan, 1937 is best considered to have affinities with the Cavisomidae Meyer, 1932. The Cavisomidae has priority over the Diplosentidae; thus the Diplosentidae becomes a synonym of the Cavisomidae. Neorhadinorhynchus and Sclerocollum are considered synonyms of Diplosentis. The affinities of the other species and genera formerly included in the Diplosentidae (other species of Diplosentis, Allorhadinorhynchus Yamaguti, 1959, Amapacanthus Salgado-Maldonado et Santos, 2000, Pararhadinorhynchus Johnston et Edmonds, 1947, Golvanorhynchus Noronha, do Fabio et Pinto, 1978 and Slendrorhynchus Amin et Soy, 1996) are discussed. It is concluded that all but Pararhadinorhynchus, two species of Diplosentis and Amapacanthus can be accommodated elsewhere satisfactorily. A new family, Transvenidae, is proposed for a small group of acanthocephalans that genuinely possess only two cement glands. Transvena annulospinosa gen. n., sp. n. is described from the labrids Anampses neoguinaicus Bleeker, 1878 (type host), A. geographicus Valenciennes, 1840, A. caeruleopunctatus Ruppell, 1829, Hemigymnus fasciatus (Bloch, 1792), and H. melapterus (Bloch, 1791) from the Great Barrier Reef, Queensland, Australia. Transvena gen. n. is distinguished from all other acanthocephalan genera by having a combination of a single ring of small spines on its trunk near or at the junction between the neck and trunk, two cement glands, a double-walled proboscis receptacle and hooks which decrease in length from the apex to the base of the proboscis. A second new genus within the Transvenidae, Trajectura, is proposed for T. perinsolens sp. n. from Anampses neoguinaicus, also from the Great Barrier Reef. Trajectura gen. n. is distinguished by the possession of only two cement glands and an anterior conical projection (function unknown) on the females. Diplosentis ikedai Machida, 1992 shares these characters and is recombined as Trajectura ikedai comb. n. Pararhadinorhynchus is transferred to the Transvenidae and Diplosentis manteri Gupta et Fatma, 1979 is recombined as Pararhadinorhynchus manteri comb. n.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.
Resumo:
The family Enenteridae is reviewed, with keys to the genera and species and diagnoses of the family and genera, based on a cladistic analysis utilising 44 characters. Subfamilies are not recognised. Descriptions of the following taxa from Australian marine teleosts are given: Enenterum mannarense from Kyphosus sydneyanus, SW Australia, E. elongatum from Kyphosus sydneyanus, SW Australia (these two species are distinguished by the number of oral lobes and the ovary to anterior testis distance), Koseiria huxleyi n. sp. from Chaetodontoplus meredithi, Great Barrier Reef (this new species is distinguished by the vitellarium reaching into the forebody, the infundibuliform terminal oral sucker, the unlobed ovary and the distinct post-oral ring), Koseiria xishaense from Kyphosus cinerascens and K. vaigiensis, Great Barrier Reef, Cadenatella isuzumi from Kyphosus cinerascens and K. vaigiensis, Great Barrier Reef, and C. pacifica (Yamaguti, 1970) n. comb. [was Jeancadenatia] from Kyphosus cinerascens and K. vaigiensis, Great Barrier Reef. The genus Jeancadenatia is considered a synonym of Cadenatella, and the new combination C. dollfusi (Hafeezullah, 1980) is formed. Members of the family are parasitic mainly in herbivorous fishes with a few genera and species from non-herbivorous fishes.
Resumo:
A frequently desired outcome when rehabilitating Zn toxic sites in Australia is to establish a self-sustaining native ecosystem. Hence, it is important to understand the tolerance of Australian native plants to high concentrations of Zn. Very little is known about the responses of Australian native plants, and trees in particular, to toxic concentrations of Zn. Acacia holosericea, Eucalyptus camaldulensis and Melaleuca leucadendra plants were grown in dilute solution culture for 10 weeks. The seedlings (42 days old) were exposed to six Zn treatments viz., 0.5, 5, 10, 25, 50 and 100 muM. The order of tolerance to toxic concentrations of Zn was E. camaldulensis > A. holosericea > M. leucadendra, the critical external concentrations being approximately 20, 12 and 1.5 muM, respectively. Tissue Zn concentrations increased as solution Zn increased for all species. Root tissue concentrations were higher than shoot tissue concentrations at all solution Zn concentrations. The critical tissue Zn concentrations were approximately 85 and 110 mug g(-1) DM for M. leucadendra, 115 and 155 mug g(-1) DM for A. holosericea and 415 and 370 mug g(-1) DM for E. camaldulensis for the youngest fully expanded leaf and total shoots, respectively. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the rehabilitation of potentially Zn toxic sites.
Resumo:
We inferred the phylogeny of 33 species of ticks from the subfamilies Rhipicephalinae and Hyalomminae from analyses of nuclear and mitochondrial DNA and morphology. We used nucleotide sequences from 12S rRNA, cytochrome c oxidase I, internal transcribed spacer 2 of the nuclear rRNA, and 18S rRNA. Nucleotide sequences and morphology were analyzed separately and together in a total-evidence analysis. Analyses of the five partitions together (3303 characters) gave the best-resolved and the best-supported hypothesis so far for the phylogeny of ticks in the Rhipicephalinae and Hyalomminae, despite the fact that some partitions did not have data for some taxa. However, most of the hidden conflict (lower support in the total-evidence analyses compared to that in the individual analyses) was found in those partitions that had taxa without data. The partitions with complete taxonomic sampling had more hidden support (higher support in the total-evidence analyses compared to that in the separate-partition analyses) than hidden conflict. Mapping of geographic origins of ticks onto our phylogeny indicates an African origin for the Rhipicephalinae sensu lato (i.e., including Hyalomma spp.), the Rhipicephalus-Boophilus lineage, the Dermacentor-Anocentor lineage, and the Rhipicephalus-Booophilus-Nosomma-Hyalomma-Rhipicentor lineage. The Nosomma-Hyalomma lineage appears to have evolved in Asia. Our total-evidence phylogeny indicates that (i) the genus Rhipicephalus is paraphyletic with respect to the genus Boophilus, (ii) the genus Dermacentor is paraphyletic with respect to the genus Anocentor, and (iii) some subgenera of the genera Hyalomma and Rhipicephalus are paraphyletic with respect to other subgenera in these genera. Study of the Rhipicephalinae and Hyalomminae over the last 7 years has shown that analyses of individual datasets (e.g., one gene or morphology) seldom resolve many phylogenetic relationships, but analyses of more than one dataset can generate well-resolved phylogenies for these ticks. (C) 2001 Academic Press.