989 resultados para G7520 1654 .S3
Resumo:
Ocean Drilling Program (ODP) Leg 134 was located in the central part of the New Hebrides Island Arc, in the Southwest Pacific. Here the d'Entrecasteaux Zone of ridges, the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain, is colliding with the arc. The region has a Neogene history of subduction polarity reversal, ridge-arc collision, and back-arc spreading. The reasons for drilling in this region included the following: (1) to determine the differences in the style and time scale of deformation associated with the two ridge-like features (a fairly continuous ridge and an irregularly topographic seamount chain) that are colliding with the central New Hebrides Island Arc; (2) to document the evolution of the magmatic arc in relation to the collision process and possible Neogene reversal of subduction; and (3) to understand the process of dewatering of a small accretionary wedge associated with ridge collision and subduction. Seven sites were occupied during the leg, five (Sites 827-831) were located in the d'Entrecasteaux Zone where collision is active. Three sites (Sites 827, 828, and 829) were located where the North d'Entrecasteaux Ridge is colliding, whereas two sites (Sites 830 and 831) were located in the South d'Entrecasteaux Chain collision zone. Sites 828 (on North d'Entrecasteaux Ridge) and 831 (on Bougainville Guyot) were located on the Pacific Plate, whereas all other sites were located on a microplate of the North Fiji Basin. Two sites (Sites 832 and 831) were located in the intra-arc North Aoba Basin. Results of Leg 134 drilling showed that forearc deformation associated with the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain collision is distinct and different. The d'Entrecasteaux Zone is an Eocene subduction/obduction complex with a distinct submerged island arc. Collision and subduction of the North d'Entrecasteaux Ridge results in off scraping of ridge material and plating of the forearc with thrust sheets (flakes) as well as distinct forearc uplift. Some offscraped sedimentary rocks and surficial volcanic basement rocks of the North d'Entrecasteaux Ridge are being underplated to the New Hebrides Island forearc. In contrast, the South d'Entrecasteaux Chain is a serrated feature resulting in intermittent collision and subduction of seamounts. The collision of the Bougainville Guyot has indented the forearc and appears to be causing shortening through thrust faulting. In addition, we found that the Quaternary relative convergence rate between the New Hebrides Island Arc at the latitude of Espiritu Santo Island is as high as 14 to 16 cm/yr. The northward migration rate of the d'Entrecasteaux Zone was found the be ~2 to 4 cm/yr based on the newly determined Quaternary relative convergence rate. Using these rates we established the timing of initial d'Entrecasteaux Zone collision with the arc at ~3 Ma at the latitude of Epi Island and fixed the impact of the North d'Entrecasteaux Ridge upon Espiritu Santo Island at early Pleistocene (between 1.89 and 1.58 Ma). Dewatering is occurring in the North d'Entrecasteaux Ridge accretionary wedge, and the wedge is dryer than other previously studied accretionary wedges, such as Barbados. This could be the result of less sediment being subducted at the New Hebrides compared to the Barbados.
Resumo:
Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Resumo:
During IODP Expedition 302 (Arctic Coring Expedition-ACEX), the first scientific drilling campaign in the permantly ice-covered central Arctic Ocean, a 430 m thick sequence of upper Cretaceaous to Quaternary sediments has been drilled. The lower half of this sequence is composed of organic-carbon-rich (black shale-type) sediments with total organic carbon contents of about 1-14%. Significant amounts of the organic matter preserved in these sediments is of algae-type origin and accumulated under anoxic/euxinic conditions. Here, for the first time detailed data on the source-rock potential of these black shales are presented, indicating that most of the Eocene sediments have a (fair to) good source-rock potential, prone to generate a gas/oil mixture. The source-rock potential of the Campanian and upper Paleocene sediments, on the other hand, is rather low. The presence of oil or gas already generated in situ, however, can be ruled out due to the immaturity of the ACEX sediments.
Resumo:
Fil: Licata, Rosa. Universidad Nacional de Cuyo
Resumo:
Plant species distributions are expected to shift and diversity is expected to decline as a result of global climate change, particularly in the Arctic where climate warming is amplified. We have recorded the changes in richness and abundance of vascular plants at Abisko, sub-Arctic Sweden, by re-sampling five studies consisting of seven datasets; one in the mountain birch forest and six at open sites. The oldest study was initiated in 1977-1979 and the latest in 1992. Total species number increased at all sites except for the birch forest site where richness decreased. We found no general pattern in how composition of vascular plants has changed over time. Three species, Calamagrostis lapponica, Carex vaginata and Salix reticulata, showed an overall increase in cover/frequency, while two Equisetum taxa decreased. Instead, we showed that the magnitude and direction of changes in species richness and composition differ among sites.
Resumo:
Geochemical analyses of organic matter were carried out on Quaternary sediments from Sites 582 and 583 (Nankai Trough) and on Pliocene to Miocene sediments from Site 584 (Japan Trench), DSDP Leg 87, to evaluate petroleum-generating potential and to characterize the organic matter. The vitrinite-huminite reflectances of indigenous materials for these sites are less than 0.3% indicating the immature nature of the sediments. The sediments, however, contain remarkable amounts of recycled organic materials. The Quaternary sediments from Sites 582 and 583 contain small amounts of amorphous organic matter (less than 0.75 wt.% organic carbon and 66-90% amorphous debris), which is composed of predominantly recycled, oxidized, and over-matured (or matured) Type III material. The amount of hydrocarbon yield indicates that those sediments have lean-source potential for commercial hydrocarbon generation. The Pliocene to Miocene sediments from Site 584 contain organic matter (0.3-1.09 wt.% organic carbon) of predominantly amorphous debris (68-96%) that originated in two sources, an indigenous Type II material and a recycled, over-matured material. Pyrolysis shows an upward increase in the section of hydrocarbon yield and the same trend is also observed in organic-carbon content. The amount of the yield indicates that the Miocene sediments have lean-to-fair source potential and the Pliocene sediments have fair-to-good source potential.
Resumo:
An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.
Resumo:
The deep Black Sea is known to be depleted in electron-acceptors for sulphide oxidation. This study on depth distributions of sulphur species (S(II), S(0),S(n)**2-,S2O3**2-,SO3**2-,SO4**2-) in the Dvurechenskii mud volcano, a cold seep situated in the permanently anoxic eastern Black Sea basin (Sorokin Trough, 2060 m water depth), showed remarkable concentrations of sulphide oxidation products. Sulphite concentrations of up to 11 µmol L**1-, thiosulphate concentrations of up to 22 µmol L**1-, zero-valent sulphur concentrations of up to 150 µmol L**1- and up to five polysulphide species were measured in the upper 20 cm of the sediment. Electron-acceptors found to be available in the Dvurechenskii mud volcano (DMV) for the oxidation of hydrogen sulphide to sulphide oxidation intermediates are iron-minerals, and probably also reactive manganese phases. Up to 60 µmol g**1- of reactive iron-minerals and up to 170 µmol L**1- dissolved iron was present in the central summit with the highest fluid upflow and fresh mud outflow. Thus, the source for the oxidative power in the DMV are reactive iron phases extruded with the mud from an ancient source in the deeply buried sediments, leading to the formation of various sulphur intermediates in comparably high concentrations. Another possible source of sulphide oxidation intermediates in DMV sediments could be the formation of zero-valent sulphur by sulphate dependent anaerobic microbial oxidation of methane followed by disproportionation of zero-valent sulphur. Sulphide oxidation intermediates, which are produced by these processes, do not reach thermodynamic equilibrium with rhombic sulphur, especially close to the active center of the DMV due to a short equilibration time. Thus, mud volcano sediments, such as in the DMV, can provide oxidizing niches even in a highly reduced environment like the abyssal part of the Black Sea.
Resumo:
The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.
Resumo:
The sediments of the Argo and Gascoyne abyssal plains are generally lean in organic matter, are immature, and contain hydrocarbons trapped during sediment deposition rather than those generated during sediment catagenesis. TOC concentrations in the Argo Abyssal Plain Cenozoic sediments are 0.5 wt%, and organic matter appears to be from mixed marine and reworked, degraded, organic matter sources, with the latter being contributed by turbidity flows from the nearby continental margin. TOC concentrations within the Cenozoic sediments of the Gascoyne Abyssal Plain are mostly undetectable (<0.1 wt%). Biomarker distributions determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS) indicate that organic matter extracted from the Lower Cretaceous sediments from both sites is predominantly marine with varying contributions from terrestrial organic matter. The specific marine biomarker, 24-n-propylcholestane is in relatively high abundance in all samples. In addition, the relatively high abundance of the 4-methylsteranes with the 23,24-dimethyl side chain (in all samples) indicates significant dinoflagellate contributions and marine organic matter. The ratios of n-C27/n-C17 reflect relative contributions of marine vs. terrestrial organic matter. TOC, while generally low at Argo, is relatively high near the Barremian/Aptian boundary (one sample has a TOC of 5.1 wt%) and the Aptian/Albian boundary (up to 1.3 wt% TOC), and two samples from the Barremian and Aptian sections contain relatively high proportions of terrestrial organic carbon. TOC values in the Lower Cretaceous sediments from Gascoyne Abyssal Plain are low (<0.1 wt%) near the Aptian/Barremian boundary. TOC values are higher in older sediments, with maxima in the upper Barremian (1.02 wt%), the Barremian/Hauterivian (0.6 wt%), and Valanginian (1.8 wt%). Sediments from the upper Barremian contain higher amounts of terrestrial organic carbon than older sediments.